motto
Proste jest piękne
Teoria implikacji prostej i odwrotnej
Artykuł w oryginale:
Teoria implikacji prostej i odwrotnej
Autor: Kubuś
W pracach nad teorią implikacji bezcennej pomocy udzielili Kubusiowi (sfinia) przyjaciele:
Wujzbój (sfinia), Miki (sfinia), Irbisol (sfinia).
Wielkie dzięki !
Szczególne podziękowania WujowiZbójowi za jego nieskończoną cierpliwość w dyskusjach z Kubusiem.
Spotkało się czterech odpowiednich ludzi w odpowiednim miejscu i czasie, gdyby zabrakło któregokolwiek ogniwa ta teoria nie mogłaby zaistnieć.
Czytelnicy którzy nie znają elementarza algebry Boole'a proszeni są o przeczytanie zaledwie dwóch punktów 1.0 i 2.0 z tego linku - to wystarczy.
Część I Fundamenty algebry Boole'a
Spis treści.
1.0 Cel artykułu
1.1 Notacja
2.0 Operatory logiczne
2.1 Lista operatorów logicznych
2.2 Jak działają operatory logiczne
3.0 Kubusiowe tablice logiki
3.1 Kubusiowa tablica logiki dla operatorów OR, NOR, AND, NAND
3.2 Kubusiowa tablica logiki dla operatorów <=>, XOR, =>, ->, <=, <-
4.0 Geneza implikacji
4.1 Równoważność
4.2 Implikacja prosta
4.3 Implikacja odwrotna
4.4 Prawa Kubusia
4.5 Analiza fałszu
4.6 Implikacja w detektywistyce
4.7 Implikacje śmiecie
5.0 Teoria groźby i obietnicy
5.1 Obietnica
5.1.1 Obietnica w równaniach matematycznych
5.2 Groźba
5.2.1 Groźba w równaniach matematycznych
5.3 Równoważność
5.4 Logika dodatnia i ujemna w obietnicach i groźbach
5.4.1 Obietnice
5.4.2 Groźby
6.0 Fundamenty logiki człowieka
6.1 Najważniejsze twierdzenie w logice człowieka
6.2 Obsługa obietnicy
6.3 Obsługa groźby
6.4 Pozorne sprzeczności z algebrą Boole’a
6.5 Dialogi
6.6 Pytania i odpowiedzi
7.0 Dodatek matematyczno-filozoficzny
Wstęp:
Kluczem do napisania tego artykułu była próba poustawiania operatorów logicznych w tabeli. Byłem pewien że jest ich osiem, że implikacja prosta to operator w logice dodatniej zaś odwrotna to operator w logice ujemnej. Ta koncepcja zupełnie nie pasowała do pozostałych operatorów. Wprowadziłem operatory ujemne implikacji jednak wtedy wyszło mi iż operatorów jest 10. Oczywiście dziesięć nie może być, musi być 16. Lokalizacja i zdefiniowanie pozostałych 6 operatorów było już łatwe. Ciekawy jest fakt, że wszystko co tu najważniejsze powstało w ciągu kilku godzin po imprezie Andrzejkowej ... gdyby Kubuś nie miał tak małego rozumku to napisałby to już dwa lata temu i by się nie męczył, przecież wszystko jest takie proste …
1.0 Cel artykułu
Najbardziej zaskakujące wnioski w mojej dwuletniej walce z implikacją na forum
www.sfinia.fora.pl (metodologia) wyniknęły po ułożeniu operatorów logicznych w tablicach logiki (pkt.3.0). Z tablic tych wynika, że istnieją aż cztery operatory implikacji. Dwa w logice dodatniej (<= i =>) i dwa w logice ujemnej (<- i ->). Oczywiście operatorów w logice ujemnej nikt w języku mówionym nie używa podobnie jak operatorów NOR i NAND.
Implikacja prosta i implikacja odwrotna to jednak operatory po tej samej stronie księżyca co operatory AND ("i") i OR ("lub"). Są to zatem operatory stosowane w praktyce przez wszystkich bardzo często (także w matematyce), od przedszkolaków poczynając na starcach kończąc.
Zdań podlegających pod implikację prostą jest dokładnie tyle samo co zdań podlegających pod implikację odwrotną.
Jest to oczywistość wynikająca z definicji implikacji prostej i odwrotnej oraz z praw Kubusia.
Najwyższy więc czas przeprosić implikację odwrotną i umieścić ją obok jedynie słusznej implikacji prostej widniejącej we wszystkich podręcznikach i encyklopediach ... to jest cel tego artykułu.
Prawa Kubusia mówią o matematycznych związkach między implikacją prostą a implikacją odwrotną.
=> - symbol implikacji prostej
<= - symbol implikacji odwrotnej
Prawo zamiany implikacji prostej na odwrotną:
p=>q = ~p <= ~q
Prawo zamiany implikacji odwrotnej na prostą:
p<=q = ~p => ~q
W prawie Kubusia negujemy zmienne p, q i odwracamy operator => na <= albo <= na =>.
1.1 Notacja
# - różne
* - symbol iloczynu logicznego (AND), w mowie potocznej spójnik 'i'
+ - symbol sumy logicznej (OR), w mowie potocznej spójnik "lub"
~ - przeczenie, negacja (NOT), w mowie potocznej przeczenie "nie"
~(...) - w mowie potocznej "nie może się zdarzyć że ...", "nie prawdą jest że ..."
=> - symbol implikacji prostej (np. obietnica)
<= - symbol implikacji odwrotnej (np. groźba)
<=> - symbol równoważności (implikacji dwustronnej)
Bardzo ważna notacja dla zdań implikacji:
1 1 1 - oznacza zawsze zdanie wypowiedziane (implikację)
x x x inne niż 1 1 1 - oznacza analizę zdania wypowiedzianego
2.0 Operatory logiczne
Efektem ubocznym walki z implikacją jest odkrycie i nazwanie wszystkich operatorów matematycznych w algebrze Boole'a ( jest ich 16 a nie jak niektórzy sądzą 8 ) oraz Kubusiowe tablice logiki zdefiniowane dzięki odkryciu logiki ujemnej w algebrze Boole'a. W Wikipedii w temacie "logika ujemna" pisze o związku 0 i 1 z poziomami napięć. Przydatność takiego pojęcia w matematyce jest równa zeru absolutnemu - zapomnijmy o tym.
2.1 Lista operatorów logicznych
Kod:
p q OR NOR AND NAND <=> XOR => -> <= <- FILL NOP P NP Q NQ
0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0
1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Kod:
Logika dodatnia Logika ujemna
OR NOR
AND NAND
<=> XOR
=> ->
<= <-
FILL NOP
P NP
Q NQ
Jak to możliwe iż wszystkich operatorów jest 16 a nie 8 ?
Połowa z tych operatorów działa w logice dodatniej a druga połowa w logice ujemnej.
Co to jest logika ujemna ? ... widać w powyższych tabelach.
Każdy operator dodatni ma swego oponenta w postaci operatora ujemnego. Negując operator dodatni otrzymamy operator ujemny i odwrotnie. Iloczyn logiczny tych operatorów jest zawsze równy zeru (operator NOP), zaś suma logiczna zawsze równa 1 (operator FILL). Same jedynki (FILL) to czysta pamięć mikroprocesora przed wpisaniem programu. Rozkaz NOP jest w każdym mikroprocesorze i oznacza NIC NIE RÓB - odpoczywaj. Jakby kto nie wiedział to w mikroprocesorze pracuje najprawdziwszy krasnoludek ...
Operatory logiczne w równaniach matematycznych:
OR = ~(~p*~q) = p + q - prawo de’Morgana
NOR = ~p*~q = ~(p+q) - prawo de'Morgana (logika ujemna)
AND = p*q = ~(~p+~q) - prawo de'Morgana
NAND = ~(p*q) = ~p+~q - prawo de'Morgana (logika ujemna)
<=> = (~p*~q)+(p*q)
XOR = ~p*q + p*~q (logika ujemna)
Operator implikacji prostej:
=> = ~p + q = ~(p*~q) - prawo de'Morgana
-> = p*~q = ~(~p + q) - prawo de'Morgana (logika ujemna)
Operator implikacji odwrotnej:
<= = p+~q = ~(~p*q) - prawo de'Morgana
<- = ~p*q = ~(p+~q) - prawo de'Morgana (logika ujemna)
FILL = ~p*~q + ~p*q + p*~q + p*q
NOP = p*q + p*~q + ~p*q + ~p*~q (logika ujemna)
P = p
NP = ~p (logika ujemna)
Q = q
NQ=~q (logika ujemna)
Za operatory dodatnie przyjąłem te operatory których człowiek używa w języku mówionym.
Bez operatorów ujemnych niemożliwe byłoby zbudowanie jakiegokolwiek komputera. Najciekawszy jest fakt, iż w logice "wystarczy" jeden operator NOR albo NAND - reszta jest teoretycznie zbędna.
Sprzętowe DNA wszystkich Komputerów to zaledwie jedna dwuwejściowa bramka NOR albo NAND dostępna w dowolnej ilości - taki totalny "prymityw".
Bez operatorów ujemnych nic by nie działało ... nasz Wszechświat nie mógłby istnieć.
2.2 Jak działają operatory logiczneTo poważna sprawa, myślę iż potrzebna tu będzie pomoc moich przyjaciół ... krasnoludków.
Wyobraźmy sobie czarne pudełko z dwoma wyłącznikami lampek, jeden wyłącznik ma na imię p a drugi q. Przełączniki wyglądają jak te najzwyklejsze od lampek nocnych z napisem 1 = włącz i 0 = wyłącz.
Zapalane światełka widzi zarówno człowiek jak i pracujący w środku krasnoludek. Oczywiście nie widzimy ani krasnoludka ani jego przełącznika którym zapala swoją lampkę. Widzimy wyłącznie lampkę krasnoludka.
Zaobserwujmy pracę krasnoludka pracującego zgodnie z tabelą prawdy operatora NOR.
Kod:
p q NOR
1 1 0
1 0 0
0 1 0
0 0 1
Ustawmy na przełącznikach p i q pierwszą linię powyższej tabeli prawdy. Jak widzimy lampka krasnoludka zgaszona. Podobną sytuację mamy w liniach 2 i 3.
Ustawiamy z niepokojem linię 4 i co widzimy ?
Jest - świeci się !
To jest dowód na istnienie krasnoludków w naszym Wszechświecie !
3.0 Kubusiowe tablice logikiKubuś o bardzo małym rozumku wypełni swoje tablice logiki tylko dla następujących operatorów:
OR, NOR, AND, NAND, <=>, XOR, =>, ->, <=, <-
Uzupełnienie tablicy dla pozostałych operatorów pozostawiam przedszkolakom ... a niech się trochę zabawią.
3.1 Kubusiowa tablica logiki dla operatorów OR, NOR, AND, NANDKod:
Logika dodatnia Y Logika ujemna ~Y Związek logik
OR NOR
Y=A+B ~Y = A NOR B A+B = ~(A NOR B)
Prawo de'Morgana Prawo de'Morgana
~Y = ~A*~B Y = ~A NAND ~B ~(~A*~B) = ~A NAND ~B
Związek krzyżowy OR-NOR
A+B = ~A NAND ~B
~A*~B = A NOR B
AND NAND
Y=A*B ~Y = A NAND B A*B = ~(A NAND B)
Prawo de'Morgana Prawo de'Morgana
~Y = ~A + ~B Y = ~A NOR ~B ~(~A+~B) = ~A NOR ~B
Związek krzyżowy AND-NAND
A*B = ~A NOR ~B
~A+~B = A NAND B
W komputerach występują wszystkie operatory wyżej wymienione. Człowiek w języku mówionym nie używa operatorów NOR i NAND. Czyżby komputer był mądrzejszy od człowieka ? Oczywiście nie bo co innego budowa komputera (harware) a co innego jego oprogramowanie (software). Asem atutowym człowieka w walce z komputerem jest absolutnie genialna implikacja nie mająca zastosowania w komputerach tzn. komputery nie mają pojęcia o wolnej woli opisywanej matematycznie przez implikację właśnie. Dopóki komputer nie będzie miał wolnej woli, dopóty nie będzie dorastał do pięt naszemu mózgowi tzn. człowiek jest i będzie jego Bogiem. Póki co największemu i najmądrzejszemu komputerowi na świecie wystarczy wyjąć wtyczkę od zasilania i już jest kupą złomu. "Mądrość" komputera należy brać w cudzysłowie bowiem najmądrzejszy komputer na świecie nie potrafi napisać najprostszego nawet programu. Komputer jest wyłącznie marionetką wypełniającą rozkazy człowieka - niczym więcej.
3.2 Kubusiowa tablica logiki dla operatorów <=>, XOR, =>, ->, <=, <-Kod:
Logika dodatnia Y Logika ujemna ~Y Związek logik
<=> XOR <=> = ~XOR
XOR = ~(<=>)
<=>=(p=>q)*(p<=q) XOR=(p->q)+(p<-q)
=> ->
p=>q p->q p=>q = ~(p->q)
p->q = ~(p=>q)
Prawo Kubusia Prawo Kubusia
p=>q = ~p <= ~q p->q = ~p <- ~q
<= <-
p<=q p<-q p<=q = ~(p<-q)
p<-q = ~(p<=q)
Prawo Kubusia Prawo Kubusia
p<=q = ~p => ~q p<-q = ~p -> ~q
4.0 Geneza implikacjiW matematyce interesują nas tylko te zdania którym da się przypisać jednoznacznie prawdę albo fałsz. Dowolne zdanie proste albo złożone o tych cechach musi być albo prawdziwe albo fałszywe.
Jeśli wypowiedziane zdanie jest prawdziwe to jego zaprzeczenie musi być fałszem i odwrotnie (uzasadnienie w pkt.7.0).
Przykłady zdań prostych, matematycznie poprawnych:
Y = Księżyc jest z sera - FAŁSZ
~Y = Księżyc nie jest z sera - PRAWDA
Y = JPII był Polakiem - PRAWDA
~Y = JPII nie był Polakiem – FAŁSZ
gdzie Y jest symboliczną i abstrakcyjna wartością zdania (wyjście logiczne w układach cyfrowych). Abstrakcyjną dlatego, że nie występuje ona w zdaniu prostym wypowiedzianym, w przeciwieństwie do implikacji.
Przykłady zdań prostych matematycznie niepoprawnych:
ble, ble -

?
NIE ble, ble

?
Krasnoludki mają czerwone czapeczki

?
Krasnoludki nie mają czerwonych czapeczek

?
Zdania złożone "Jeśli...to..." poprawne matematycznie podlegają pod definicję implikacji. Spróbujmy zrozumieć genezę implikacji zaczynając od znanej wszystkim równoważności matematycznej.
4.1 RównoważnośćDefinicja równoważności:
p<=>q - p zajdzie wtedy i tylko wtedy gdy zajdzie q
<=> - symbol równoważności
Przykład:
Jeśli czworobok ma wszystkie kąty proste to jest prostokątem
p<=>q
Twierdzenie o równoważności:Warunkiem koniecznym i wystarczającym zajścia równoważności są dwie niepodważalne prawdy w zdaniu wypowiedzianym (p*q=1) oraz w przeczeniu zdania wypowiedzianego (~p*~q=1).
Dowód:
<=> = (p=>q)*(p<=q) = (p=>q)*(~p=>~q) - warunek równoważności w implikacji prostej
<=> = (p=>q)*(p<=q) = (~p<=~q)*(p<=q) - warunek równoważności w implikacji odwrotnej
gdzie:
p=>q - definicja implikacji prostej
p<=q - definicja implikacji odwrotnej
p<=q = ~p=>~q - prawo Kubusia zamiany implikacji odwrotnej na prostą
p=>q = ~p<=~q - prawo Kubusia zamiany implikacji prostej na odwrotną
Utwórzmy wszystkie możliwe przeczenia dla dwóch parametrów p i q.
Definicja symboliczna równoważności:
p q p<=>q
p q =1
1 1 1
Jeśli czworobok ma wszystkie kąty proste to jest prostokątem
p=>q
~p ~q = 1
0 0 1
Jeśli czworobok nie ma wszystkich kątów prostych to nie jest prostokątem
~p=>~q
~p q = 0
0 1 0
Jeśli czworobok nie ma wszystkich kątów prostych to jest prostokątem
~p=>q
p ~q = 0
1 0 0
Jeśli czworobok ma wszystkie kąty proste to nie jest prostokątem
p=>~q
W równoważności mamy dwie zmienne p i q zatem cztery możliwe przypadki przeczeń jak wyżej.
Z punktu widzenia algebry Boole’a warunek iż całe zdanie musi być prawdziwe albo fałszywe mamy spełniony podwójnie gdyż mamy dwie pewne prawdy (p*q=1 i ~p*~q=1) i dwa pewne fałsze (~p*q=0 i p*~q=0)
Dla poprawności matematycznej wypowiedzianego zdania wystarczy nam jedna prawda i jeden fałsz.
W tym przypadku mamy do czynienia z implikacją.
4.2 Implikacja prostaDefinicja implikacji prostej:
Jeśli zajdzie p to zajdzie q (z p wynika q)
p=>q = ~p + q = ~(p*~q) - prawo de'Morgana
=> - symbol implikacji prostej
Implikacja jest implikacją matematyczną, jeśli zdaniu można przypisać fałsz albo prawdę. W implikacji prostej mamy gwarancję zajścia prawdy w zdaniu wypowiedzianym 1 1 1 co wymusza gwarancję fałszu w linii 1 0 0. W pozostałych liniach wszystko może się zdarzyć.
Definicja zero-jedynkowa implikacji prostej:
p q p=>q
1 1 1 - gwarancja zajścia prawdy (bo implikacja prosta)
0 0 1 - może zajść ale nie musi bo może wystąpić implikacja 0 1 1
0 1 1 - może zajść ale nie musi bo może zajść 0 0 1
1 0 0 - gwarancja fałszu (wymuszona gwarancją prawdy w 1 1 1)
Definicja symboliczna implikacji prostej, przydatna w analizie zdań:
p q p=>q
p p = 1
~p~q = 1
~p q = 1
p ~q = 0
Oczywiście, tabela symboliczna zapisana jest w logice dodatniej:
p=1 ~p = 0
q=1 ~q = 0
Twierdzenie o implikacji prostej:Jeśli pewna prawda występuje wyłącznie w zdaniu wypowiedzianym p*q=1 (nie występuje w ~p*~q=1) to mamy do czynienia z implikacją prostą i zdanie wypowiedziane analizujemy w oparciu o definicję implikacji prostej.
Dowód:
Pewne prawdy w p*q=1 i ~p*~q=1 wymuszają równoważność.
Brak pewnej prawdy w p*q=1 wymusza implikację odwrotną.
Brak pewnej prawdy w p*q=1 i ~p*~q=1 wymusza matematycznego śmiecia.
Pewna prawda w zdaniu wypowiedzianym p*q=1 wymusza pewny fałsz w zdaniu p*~p=0.
1 1 1 – twarda prawda
Jeśli dowolna liczba jest podzielna przez 4 to jest podzielna przez 2
P4=>P2
1 0 0 – twardy fałsz
Jeśli dowolna liczba jest podzielna przez 4 to nie jest podzielna przez 2
P4=>~P2
W implikacji prostej w zaprzeczeniu zdania wypowiedzianego ~p*~q=1 nie musi występować pewna prawda co wymusza brak pewnego fałszu w zdaniu ~p*q czyli ~p*q=1.
I.
0 0 1 – prawda miękka bo 6, 10, 14..
Jeśli dowolna liczba nie jest podzielna przez 4 to nie jest podzielna przez 2
~P4=>~P2
II.
0 1 1 – prawda miękka bo 6, 10, 14 ...
Jeśli dowolna liczba nie jest podzielna przez 4 to jest podzielna przez 2
~P4=>P2
Zauważmy, że powyższe prawdy miękkie nigdy nie wystąpią jednocześnie. Dla 6, 10, 14 ... zdanie I jest fałszem zaś zdanie II jest prawdą. Dla innych liczb niepodzielnych przez 4 (np. 3, 5...) zdanie I jest prawdą zaś zdanie II fałszem.
Zauważmy, że jedynki w powyższych liniach I i II oznaczają iż prawda MOŻE zajść a nie MUSI zajść.
MOŻE – robi wielką różnicę
Zauważmy także, że nigdy nie może zajść równoczesna prawda w zdaniach I i II bo wówczas byłoby:
~P2=P2 - algebra Boole'a leży w gruzach (pkt.7.0)
Ogólnie, w definicji implikacji prostej mamy:
~p*~q = 1
~p*q = 1
Gdyby tu mogły wystąpić dwie twarde jedynki jednocześnie to byłoby:
~q=q - algebra Boole'a leży w gruzach
Przykład:
p*q=1
1 1 1 - zdanie wypowiedziane
Jeśli zwierzę nie ma czterech łap to nie jest psem
I.
~p*~q=1
0 0 1
Jeśli zwierzę ma cztery łapy to jest psem
II.
~p*q=1
0 1 1
Jeśli zwierzę ma cztery łapy to nie jest psem (np. kot)
Dla dwóch twardych jedynek w I i II mamy:
Pies = NIE Pies - algebra Boole'a leży w gruzach.
Jedynka w I oznacza, że zwierzę o czterech nogach
może być psem ale nie
musi być psem. Jedynka w II oznacza, że zwierzę o czterech nogach
może nie być psem.
Wyobraźmy sobie, że do przedszkola przyszedł czarodziej i wyciąga z kapelusza losowo różne zwierzaki o czterech łapach pytając:
Czy to jest pies ?
Wszystkie dzieci zgodnym chórem potwierdzają gdy widzą psa (I=twarda prawda, II=twardy fałsz) albo zaprzeczają gdy widzą inne zwierzę np. kota, zająca itp czyli (I=twardy fałsz, II=twarda prawda).
Przed wyciągnięciem zwierzaka dzieci mogą tylko i wyłącznie stwierdzić że to
może być pies abo
może być nie pies. "Może być" ale nigdy nie "musi być".
Może - robi fundamentalną różnicę, to przyszłość której nikt nie zna.
4.3 Implikacja odwrotnaDefinicja implikacji odwrotnej:
Jeśli zajdzie p to
może zajść q (z p nie musi wynikać q)
p<=q = p + ~q = ~(~p*q) - prawo de'Morgana
<= - symbol implikacji odwrotnej
Implikacja jest implikacją matematyczną, jeśli zdaniu można przypisać fałsz albo prawdę. W implikacji odwrotnej w zdaniu wypowiedzianym nie mamy gwarancji zajścia prawdy. Taką gwarancję mamy w przeczeniu zdania wypowiedzianego 0 0 1, co wymusza gwarancję fałszu w linii 0 1 0.
Definicja zero-jedynkowa implikacji odwrotnej:
p q p<=q
1 1 1 - może zajść ale nie musi bo może wystąpić implikacja 1 0 1
0 0 1 - gwarancja zajścia prawdy (bo implikacja odwrotna)
0 1 0 - gwarancja fałszu (wynikająca z gwarancji prawdy w 0 0 1)
1 0 1 - może zajść ale nie musi bo może zajść 1 1 1
Definicja symboliczna implikacji odwrotnej, przydatna w analizie zdań:
p q p=>q
p p = 1
~p~q = 1
~p q = 0
p ~q = 1
Oczywiście, tabela symboliczna zapisana jest w logice dodatniej:
p=1 ~p = 0
q=1 ~q = 0
Twierdzenie o implikacji odwrotnej:Jeśli w zdaniu wypowiedzianym p*q=1 nie występuje pewna prawda (ale występuje w ~p*~q=1) to mamy do czynienia z implikacją odwrotną i zdanie wypowiedziane analizujemy w oparciu o definicję implikacji odwrotnej.
Dowód:
Pewne prawdy w p*q=1 i ~p*~q=1 wymuszają równoważność.
Pewna prawda w p*q=1 wymusza implikację prostą.
Brak pewnej prawdy w p*q=1 i ~p*~q=1 wymusza matematycznego śmiecia.
A.
1 1 1 – prawda miękka bo 6, 10, 14 ...
Jeśli dowolna liczba jest podzielna przez 2 to jest podzielna przez 4
P2<=P4
B.
1 0 1 – prawda miękka bo 4,8,12 ...
Jeśli dowolna liczba jest podzielna przez 2 to nie jest podzielna przez 4
P2<=~P4
Zauważmy, że powyższe prawdy miękkie nigdy nie wystąpią jednocześnie. Dla 6, 10, 14 ... zdanie A jest fałszem zaś zdanie B jest prawdą. Dla innych liczb podzielnych przez 2 np. 4, 8, 12 zdanie A jest prawdą zaś zdanie B jest fałszem.
Zauważmy, że jedynki w powyższych liniach A i B oznaczają iż prawda MOŻE zajść a nie MUSI zajść.
MOŻE – robi wielką różnicę
Pewna prawda w przeczeniu zdania wypowiedzianego ~p*~q=1 wymusza pewny fałsz w zdaniu ~p*p=0.
0 0 1 – twarda prawda dla wszelkich liczb niepodzielnych przez 2
Jeśli dowolna liczba jest nie podzielna przez 2 to nie jest podzielna przez 4
~P2<=~P4
0 1 0 – twardy fałsz dla wszelkich liczb niepodzielnych przez 2
Jeśli dowolna liczba jest nie podzielna przez 2 to jest podzielna przez 4
~P2<=P4
Inny przykład:
A.
1 1 1 – prawda miękka bo prostokąt (=1 dla kwadratu ale =0 dla prostokąta nie będącego kwadratem)
Jeśli czworobok ma kąty proste to jest kwadratem
KP<=KW
B.
1 0 1 – prawda miękka bo prostokąt (=1 dla prostokąta ale =0 dla kwadratu)
Jeśli czworobok ma kąty proste to nie jest kwadratem
KP<=~KW
Dla prostokąta nie będącego kwadratem mamy fałsz w zdaniu A i prawdę w zdaniu B. Dla kwadratu mamy prawdę w zdaniu A i fałsz w zdaniu B.
0 0 1 – twarda prawda
Jeśli czworobok nie ma kątów prostych to nie jest kwadratem
~KP<=~KW
0 1 0 – twardy fałsz
Jeśli czworobok nie ma katów prostych to jest kwadratem
~KP<=KW
4.4 Prawa KubusiaPrawa Kubusia mówią o matematycznych związkach implikacji prostej z implikacją odwrotną.
Prawo zamiany implikacji prostej na odwrotną:
p=>q = ~p <= ~q
Prawo zamiany implikacji odwrotnej na prostą:
p<=q = ~p => ~q
W prawie Kubusia negujemy zmienne p, q i odwracamy operator => na <= albo <= na =>.
Twierdzenie:
Zdań podlegających pod implikację prostą jest dokładnie tyle samo co zdań podlegających pod implikację odwrotną.
Jest to oczywistość wynikająca z definicji implikacji prostej i odwrotnej oraz z praw Kubusia. Najwyższy więc czas przeprosić implikację odwrotną i umieścić ją obok jedynie słusznej implikacji prostej widniejącej we wszystkich podręcznikach i encyklopediach.
Przykład zastosowania prawa Kubusia.
1 1 1
Jeśli zwierzę ma cztery łapy to jest psem
4L<=P - jeśli 4 łapy to pies
Nie jest to prawda niepodważalna (bo np. kot) zatem wypowiedziane zdanie jest albo matematyczną implikacją odwrotną, albo matematycznym śmieciem.
Zobaczmy co na to wyrocznia Kubusia:
4L<=P = ~4L=>~P
Jeśli zwierzę nie ma czterech łap to nie jest psem
~4L=>~P
Prawda niepodważalna bo każdy pies ma cztery łapy, zatem wypowiedziane zdanie jest implikacją odwrotną.
Analiza:
1 1 1
Jeśli zwierzę ma cztery łapy to jest psem
4L<=P - jeśli 4 łapy to pies
0 0 1
Jeśli zwierzę nie ma czterech łap to nie jest psem
~4L<=~P
0 1 0
Jeśli zwierzę nie ma czterech łap to jest psem = FAŁSZ, czyli pies musi mieć cztery łapy.
~4L<=P
1 0 1
Jeśli zwierzę ma cztery łapy to nie jest psem ... bo może być np. kotem itp
4L<=~P
Załóżmy, że ktoś wypowiedział takie zdanie:
1 1 1
Jeśli zwierzę nie ma czterech łap to nie jest psem
~4L=>~P
Powyższe zdanie to prawda niepodważalna, zatem jest to implikacja prosta.
Na podstawie prawa Kubusia mamy implikację równoważną:
~4L=>~P = 4L<=P – negujemy operatory i zmieniamy <= na =>.
1 1 1
Jeśli zwierzę ma cztery łapy to jest psem
4L<=P - jeśli 4 łapy to pies
Analizę tego zdania mamy wyżej więc nic nie musimy robić. Bądźmy jednak bardziej ambitni i przeanalizujmy wypowiedziane zdanie w oryginale w oparciu o implikację prostą.
Analiza:
1 1 1 - prawda niepodważalna
Jeśli zwierzę nie ma czterech łap to nie jest psem
~4L=>~P
0 0 1
Jeśli zwierzę ma cztery łapy to jest psem
4L=>P - jeśli 4 łapy to pies
0 1 1
Jeśli zwierzę ma cztery łapy to nie jest psem ... bo może być np. kotem itp
4L=>~P
1 0 0
Jeśli zwierzę nie ma czterech łap to jest psem = FAŁSZ, czyli pies musi mieć cztery łapy.
~4L=>P
4.5 Analiza fałszuLogika dodatnia zajmuje się tylko i wyłącznie analizą prawdy. Analizą fałszu zajmuje się logika ujemna przy pomocy operatorów ujemnych (pkt. 3.0). Jeśli ktoś ma ochotę myśleć w logice ujemnej i używać takich operatorów jak NOR, NAND, ->, <- ... to bardzo proszę, tylko Kubuś w to nie wchodzi.
Aksjomat
PRAWDA = NIE FAŁSZ
FAŁSZ = NIE PRAWDASensowna jest tylko analiza fałszu wynikającego z implikacji. Chodzi tu oczywiście o szukanie implikacji-matki wypowiedzianej w logice dodatniej => albo <=.
Odnalezienie implikacji-matki jest trywialne jeśli przyjrzymy się zero-jedynkowym definicjom implikacji prostej i odwrotnej.
Definicja zero-jedynkowa implikacji prostej:
p q p=>q
1 1 1 - gwarancja zajścia prawdy (bo implikacja prosta)
0 0 1 - może zajść ale nie musi bo może wystąpić implikacja 0 1 1
0 1 1 - może zajść ale nie musi bo może zajść 0 0 1
1 0 0 - gwarancja fałszu (wymuszona przez gwarancję prawdy w 1 1 1)
Definicja zero-jedynkowa implikacji odwrotnej:
p q p<=q
1 1 1 - może zajść ale nie musi bo może wystąpić implikacja 1 0 1
0 0 1 - gwarancja zajścia prawdy (bo implikacja odwrotna)
0 1 0 - gwarancja fałszu (wymuszona przez gwarancję prawdy w 0 0 1)
1 0 1 - może zajść ale nie musi bo może zajść 1 1 1
Z definicji widać, że jeśli w ewidentnym fałszu zanegujemy raz p a raz q to w jednym z tych przypadków musimy otrzymać PRAWDĘ. To zdanie będzie implikacją-matką wypowiedzianą w logice dodatniej.
Załóżmy, iż ktoś wypowiedział takie zdanie:
Jeśli liczba jest podzielna przez 4 to nie jest podzielna przez 2
Ewidentny fałsz, który może być wynikiem jakiejś poprawnej implikacji w logice dodatniej.
Negujemy raz p a raz q i sprawdzamy czy otrzymamy ewidentną prawdę.
1. Negujemy tylko p
Jeśli liczba nie jest podzielna przez 4 to nie jest podzielna przez 2
2. Negujemy tylko q
Jeśli liczba jest podzielna przez 4 to jest podzielna przez 2
Widać jak na dłoni iż implikacja-matka 1 to implikacja odwrotna zaś 2 to implikacja prosta.
cnd.
4.6 Implikacja w detektywistyceSzukając przestępcy (lub cokolwiek innego) zakładamy w implikacji pewną prawdę i stosujemy implikację prostą np.
Jeśli Kubuś był w kinie to nie mógł zabić Zbója
Drogą logicznego rozumowania, w czym użyteczna jest implikacja prosta, wykluczamy co niektóre takie „pewne” prawdy doprowadzając do ujęcia „prawdziwego” przestępcy.
Zauważmy jednak, iż takie założenia to w wielu przypadkach tylko nasze chciejstwo a nie pewna prawda, bowiem kłamać może każdy. Co gorsza, przesłanki fałszywe możemy niekiedy uznać za prawdziwe i odwrotnie. Z tego powodu sądy czasami skazują na śmierć niewinnego człowieka. Zauważmy, że w demokratycznym państwie przestępca ma ustawowe prawo do kłamstwa w obronie własnej co oznacza iż nie może zostać skazany za to że kłamie, w przeciwieństwie do kłamiących świadków.
W groźbach i obietnicach o których za chwilę, sytuacja jest diametralnie różna. Tu wszystko jest matematycznie piękne i jasne dla każdego przedszkolaka ... mimo że to jest przyszłość, której nie znamy.
4.7 Implikacje śmiecieTwierdzenie o implikacji śmieciu Nr.1.
Jeśli w zdaniu wypowiedzianym p*q=1 i w zdaniu przeczeniu ~p*~q=1 nie występuje pewna prawda to implikacja jest matematycznym śmieciem.
1 1 1
Jeśli księżyc jest z sera to pies ma cztery łapy

?
0 0 1
Jeśli księżyc nie jest z sera to pies nie ma czterech łap

?
Twierdzenie o implikacji śmieciu Nr.2
Jeśli w wypowiedzianym zdaniu poprzednik nie ma związku z następnikiem to implikacja jest matematycznym śmieciem.
Dowodem są tu definicje implikacji prostej i odwrotnej mówiące iż z p wynika q.
1 1 1
Jeśli księżyc nie jest z sera to pies ma cztery łapy
Oddzielne zdania, zarówno p jak i q są zdaniami prawdziwymi. Jednak konia z rzędem temu kto wykaże, że z faktu iż księżyc nie jest z sera wynikają w jakikolwiek sposób cztery łapy u psa.
5.0 Teoria groźby i obietnicyGroźby i obietnice to przyszłość której co prawda nie znamy, ale dzięki matematyce możemy z całą pewnością stwierdzić kiedy nadawca zostanie w przyszłości matematycznym kłamcą a kiedy nie. To jest kryształowo czysta matematyka, którą posługują się w praktyce wszyscy ... od przedszkolaka poczynając.
Matematycznie, wszelkie obietnice podlegają pod implikację prostą, zaś wszelkie groźby pod implikację odwrotną. To jeszcze jeden bardzo ważny argument za zrównaniem praw obywatelskich implikacji prostej i implikacji odwrotnej.
Aksjomat:
Nagroda = NIE kara
Kara = NIE nagroda
Nigdy nie może być:
Kara = Nagroda
bo:
Aksjomat:
Stworzenia które nie odróżniały kary od nagrody dawno wyginęły
5.1 ObietnicaDefinicja obietnicy:
Jeśli dowolny warunek to nagroda
Dla każdego normalnego człowieka jest oczywiste, że jeśli spełni warunek nagrody to musi otrzymać nagrodę, inaczej nadawca jest kłamcą.
W przypadku obietnicy mamy zatem do czynienia z implikacją prostą.
Definicja implikacji prostej, to definicja wszelkich obietnic:
Jeśli zajdzie p to zajdzie q (z p wynika q)
p=>q = ~p + q = ~(p*~q) - prawo de'Morgana
=> - symbol implikacji prostej
1 1 1 – pewna prawda bo jeśli coś obiecujemy to musimy dotrzymać przyrzeczenia
Jeśli spełnisz warunek nagrody to nagroda
Oczywiście jeśli nie dotrzymamy przyrzeczenia to jesteśmy kłamcami w oczach wszystkich normalnych ludzi. Mamy prawo do kłamstwa bo mamy wolną wolę.
1 0 0 – jeśli wyżej jest pewna prawda to tu musi być pewny fałsz
Jeśli spełnisz warunek nagrody to nie nagroda (nie nagroda = kara)
Powyższa linia gwarantuje nam matematyczne otrzymanie nagrody w przypadku spełnienia warunku nagrody.
0 0 1 – miękka prawda, bo mogę karać ale NIE MUSZĘ.
Jeśli nie spełnisz warunku nagrody to nie nagroda (nie nagroda = kara)
Mogę karać ale nie muszę oznacza, że nadawca ma prawo do aktu miłości jak niżej.
0 1 1 – miękka prawda, bo mogę skorzystać z aktu miłości (oczywiście nie muszę tego robić)
Jeśli nie spełnisz warunku nagrody to dostaniesz nagrodę ... bo cię kocham, bo tak czy siak zamierzałem ci wręczyć nagrodę itp. (dowolne uzasadnienie niezależne).
Przykład:
1 1 1 – twarda prawda w obietnicy
Jeśli zdasz egzamin dostaniesz komputer
E=>K
1 0 0 – twardy fałsz w obietnicy
Zdałem egzamin, nie dostałem komputera – nadawca jest kłamcą
E=>~K
0 0 1 – miękka prawda, bowiem nadawca ma prawo tak postąpić ale nie musi.
Nie zdałem egzaminu, nie dostałem komputera
~E=>~K
Nadawca ma prawo tak postąpić, ale nie musi bowiem ma prawo do aktu miłości jak niżej.
0 1 1 – miękka prawda, mogę otrzymać nagrodę bo akt miłości
Nie zdałeś egzaminu, dostajesz komputer ... bo widziałem że bardzo dużo się uczyłeś ale miałeś pecha.
~E=>K
5.1.1 Obietnica w równaniach matematycznychWszelkie obietnice w sposób doskonały obsługuje operator implikacji prostej – 100% algebra Boole’a.
Definicja obietnicy:
Jeśli dowolny warunek (W) to nagroda
1 1 1
Jeśli zdasz egzamin (W) dostaniesz komputer
Oznaczenia:
W=1 – warunek spełniony
W=0 – warunek nie spełniony
U – zmienna uznaniowa ustawiana przez wypowiadającego obietnicę, którą może ustawić na 0 albo 1 wedle wolnej woli
U=1 – dam komputer
U=0 – nie dam komputera
Równanie matematyczne opisujące podarowanie nagrody w obietnicy:
K = W + U
gdzie:
K=1 – mam komputer
K=0 – nie mam komputera
Jeśli warunek otrzymania nagrody zostanie spełniony to nadawca nie ma wyjścia, musi wręczyć nagrodę inaczej zostaje kłamcą.
K = W + U = 1 + U = 1 (zmienna U jest tu bez znaczenia)
Jeśli warunek otrzymania nagrody nie zostanie spełniony to nadawca i tak może wręczyć nagrodę pod dowolnym pretekstem niezależnym (U=1)
0 1 1
Nie zdałeś egzaminu (W=0), dostajesz komputer ... bo cię kocham, bo tak czy siak zamierzałem go kupić, bo widziałem że się starałeś ale miałeś pecha itp. U=1
Warunek otrzymania komputera:
K = W + U = 0 + U = U (wszystko zależy od wolnej woli nadawcy)
Nadawca może dosłownie wszystko, może nie dać nagrody albo dać, może nawet wręczyć komputer nie mówiąc słowa, ale nie może wręczyć komputera z uzasadnieniem zależnym bo będzie idiotą w oczach wszystkich normalnych (delikatnie kłamcą).
0 1 1
Nie zdałeś egzaminu (W=0) dostajesz komputer bo nie zdałeś egzaminu (U=W=0)
Warunek wręczenia komputera w obietnicy:
K = W + U = 0 + 0 = 0 (zakaz wręczenia komputera z uzasadnieniem zależnym)
Gdyby to nie była algebra Boole’a to oczywiście uzasadnienie zależne byłoby równie dobre jak każde inne, tak oczywiście nie jest bo to jest 100% algebra Boole’a !
Zauważmy, że uzasadnień niezależnych jest nieskończenie wiele a tylko jedno jedyne (zależne) jest fałszem - taka kropelka fałszu w morzu prawdy.
5.2 GroźbaDefinicja groźby:
Jeśli dowolny warunek to kara
Oczywistym jest, że nadawca ma prawo do darowania dowolnej kary i nie jest kłamcą. Przykładem jest tu cała masa gróźb wypowiadanych wobec własnych dzieci, których rodzic z założenia nie ma zamiaru wykonać, ale może wykonać gdy dziecko przekroczy pewne granice.
Jeśli nadawca może wykonać karę, ale nie musi to we wszelkich groźbach mamy do czynienia z implikacją odwrotną.
Definicja implikacji odwrotnej, to definicja wszelkich gróźb:
Jeśli zajdzie p to
może zajść q (z p nie musi wynikać q)
p<=q = p + ~q = ~(~p*q) - prawo de'Morgana
<= - symbol implikacji odwrotnej
W implikacji odwrotnej mamy z definicji gwarancję prawdy w ~p*~q=1 czyli gwarancję nie wykonania kary w przypadku nie spełnienia warunku kary. Jest to naturalne i oczywiste.
1 1 1 – prawda miękka, mogę karać ale nie muszę.
Jeśli spełnisz warunek kary to kara
1 0 1 – prawda miękka, bo nadawca może darować dowolna karę (akt łaski)
Spełniłem warunek kary, nie zostałem ukarany ... bo nadawca darował mi karę.
0 0 1 – prawda twarda inaczej to matematyczny śmieć (bo wyżej mamy już prawdę miękką)
Nie spełniłem warunku kary, nie mam prawa być karany.
0 1 0
Nie spełniłem warunku kary, zostałem ukarany – nadawca jest kłamcą
Ostatnia linia oznacza zakaz karania w przypadku nie spełnienia warunku kary.
Przykład:
1 1 1 – prawda miękka, mogę dostać lanie ale nie muszę
Jeśli ubrudzisz spodnie dostaniesz lanie
1 0 1 – prawda miękka
Ubrudziłeś spodnie, nie dostaniesz lania ... bo dziś mam dobry humor
0 0 1 – prawda twarda
Nie ubrudziłeś spodni, nie dostaniesz lania
0 1 0 – twarde kłamstwo czyli ...
Zakaz lania w przypadku czystych spodni
5.2.1 Groźba w równaniach matematycznychWszelkie groźby w sposób doskonały obsługuje implikacja odwrotna czyli 100% algebra Boole’a.
Definicja groźby:
jeśli dowolny warunek (W) to kara
1 1 1
Jeśli ubrudzisz spodnie (W) dostaniesz lanie
Warunek matematyczny karania w groźbie:
K = W*U
gdzie:
K=1 – karę wykonać
K=0 – kary nie wykonać
W=1 – warunek kary spełniony
W=0 – warunek kary niespełniony
U – zmienna uznaniowa nadawcy która może ustawić na dowolną wartość 0 albo 1 wedle wolnej woli.
Jeśli warunek kary nie zostanie spełniony W=0 to nadawca nie ma prawa karać, inaczej będzie kłamcą.
K = W*U = 0*U = 0 – zakaz karania w przypadku nie spełnienia warunku kary
Jeśli odbiorca spełni warunek kary to nadawca może zrobić co mu się podoba bo:
K = W*U = 1*U = U – wszystko w „rękach” wolnej woli nadawcy
Może nawet udać że zapomniał o wypowiedzianej groźbie i nie wykonać kary. Nie może tylko i wyłącznie jednego. Podobnie jak w obietnicy nie może darować kary z uzasadnieniem zależnym
1 0 1
Ubrudziłeś spodnie (W=1), nie dostaniesz lania ... bo ubrudziłeś spodnie (U=W=1).
Warunek karania w groźbie:
K = W*U = 1*1 = 1 – kara musi być wykonana
Nie można darować kary z uzasadnieniem zależnym (U=W) bo nadawca będzie idiotą w oczach wszystkich normalnych (delikatnie kłamcą).
Gdyby to nie była algebra Boole’a to uzasadnienie zależne odstąpienia od kary byłoby tak samo dobre jak każde inne. To jednak jest 100% algebra Boole’a !
5.3 RównoważnośćRównoważność matematyczna jest jasna dla każdego i tu nie ma o czym dyskutować. Implikacja jest pojęciem szerszym od równoważności dającym człowiekowi wolną wolę we wszelkich obietnicach i groźbach co zostało pokazane matematycznie wyżej.
Każda implikacja „Jeśli...to...” zawiera w sobie równoważność. W groźbach i obietnicach jest to genialna równoważność implikacyjna – może zajść ale nie musi. Przykładowo, w groźbach pozwala ona na wycofanie się z wypowiedzianej groźby na sekundę przed wykonaniem kary jak również na bezwzględne egzekwowanie kary. Gwarantuje zatem 100% wolną wolę we wszelkich groźbach.
W równoważności człowiek staje się bezduszną maszyną.
Zawsze musi wykonać karę gdy warunek kary spełniony i nie może dać nagrody gdy odbiorca nie spełni warunku nagrody bo będzie matematycznym kłamcą. Jego wolna wola leży w gruzach ! Równoważność, to szczególny przypadek implikacji.
W groźbach i obietnicach ludzie używają czasami zwrotu „wtedy i tylko wtedy” ale jest to tylko i wyłącznie implikacja wypowiedziana w ostrej formie bo przyszłości nikt nie zna. W przyszłości mogą zaistnieć takie szczególne okoliczności w których nadawca daruje karę i jego groźba=równoważność automatycznie stanie się implikacją - mówić to sobie może co chce. Te „szczególne” okoliczności to np. zmiana własnego zdania.
5.4 Logika dodatnia i ujemna w obietnicach i groźbachTeorię logiki dodatniej i ujemnej w algebrze Boole’a wyłożono w pkt. 3.0 tu:
Część I Fundamenty algebry Boole'aW implikacji poprzednik p możemy traktować jako wejście układu logicznego zaś następnik q jako jego wyjście. Mamy tu pełną analogię do cyfrowych układów logicznych gdzie wyjście cyfrowe może być dostępne w logice ujemnej albo dodatniej.
Definicja:
Implikacja prosta p=>q albo odwrotna p<=q jest wypowiedziana w logice dodatniej jeśli wyjście q nie jest zanegowane czyli nie występuje przeczenie NIE.
5.4.1 ObietniceDefinicja obietnicy:
Jeśli dowolny warunek to nagroda
Wszelkie obietnice obsługuje implikacja prosta.
Kubuś do Juniora:
1 1 1
Jeśli powiesz wierszyk dostaniesz czekoladę
W=>C – logika dodatnia bo C
Aksjomat:
Kara = NIE nagroda
Nagroda = NIE kara
Prawo Kubusia zamiany obietnicy na groźbę:
W=>C = ~W<=~C – negujemy zmienne i zmieniamy operator na przeciwny.
Dokładnie ta sama obietnica wypowiedziana w formie groźby.
Junior:
... a jak nie powiem wierszyka ?
Kubuś:
1 1 1
Jeśli nie powiesz wierszyka nie dostaniesz czekolady
~W<=~C – logika ujemna bo ~C
Powyższy dialog jest w życiu często spotykany. Oczywiście tylko małe dzieci zadają pytania w stylu „co będzie jak nie powiem”. Dorośli nie musza tego robić i nie robią bo jest to oczywistość. Obie te implikacje są równoważne, czyli skutkują identyczną przyszłością jak niżej.
Kubuś będzie kłamcą wtedy i tylko wtedy gdy Junior powie wierszyk i nie dostanie czekolady.
Dorośli nie robią jeszcze jednej rzeczy. Prawie nigdy nie wypowiadają jako pierwszej obietnicy w logice ujemnej ... bo nawet dziecko będzie miało tu wątpliwości co do poczytalności dorosłego.
Jeśli zatem dostaniemy do analizy obietnicę w logice ujemnej (=groźba) to prawie na pewno jest ona wyrwana z kontekstu jakiegoś dialogu lub sytuacji, co nie przeszkadza w analizie matematycznej takiej groźby.
5.4.2 GroźbyDefinicja groźby:
Jeśli dowolny warunek to kara
Dokładnie to samo co wyżej dotyczy wypowiadanych gróźb. Groźby obsługuje implikacja odwrotna.
Kubuś do Juniora:
1 1 1
Jeśli ubrudzisz spodnie dostaniesz lanie
B<=L – logika dodatnia bo L
Aksjomat:
Nagroda = NIE kara
Kara = NIE nagroda
Prawo Kubusia zamiany groźby na obietnicę:
B<=L = ~B=>~L – negujemy zmienne i odwracamy operator
Dokładnie ta sama groźba wypowiedziana w formie obietnicy.
Junior:
... a jak nie ubrudzę spodni ?
1 1 1
Jeśli nie ubrudzisz spodni nie dostaniesz lania
~B=>~L
Obie powyższe implikacje skutkują identyczną przyszłością.
Kubuś będzie kłamcą wtedy i tylko wtedy gdy Junior wróci w czystych spodniach i dostanie lanie.
6.0 Fundamenty logiki człowiekaFundamentem logiki człowieka jest algebra Boole’a.
Jednym z twardych dowodów iż fundament logiki człowieka to algebra Boole’a jest obsługa wszelkich gróźb i obietnic przy pomocy implikacji prostej (obietnice) i implikacji odwrotnej (groźby). Implikacja to 100% algebra Boole’a podobnie jak pozostałe operatory logiczne.
To jest ten przypadek, gdzie najłatwiej udowodnić iż fundamentem logiki człowieka jest algebra Boole’a. Obietnice i groźby to pojęcia nieobce przedszkolakom – musi to zatem być najprostsza rzecz pod słońcem, czyli algebra Boole’a na poziomie fundamentalnym.
6.1 Najważniejsze twierdzenie w logice człowiekaWielu logików uważa w dniu dzisiejszym, że groźba to równoważność. Takie twierdzenie jest konsekwencją faktu niedopuszczenia do głosu implikacji odwrotnej obsługującej wszelkie groźby. We wszystkich podręcznikach i encyklopediach podawana jest wyłącznie definicja implikacji prostej (obietnica) jako jedynie słuszna. Bezcenna w logice implikacja odwrotna śpi i czeka na swój dzień.
W logice człowieka trzeba z definicji usunąć przypadki kłamstwa wbrew własnej woli spowodowane złośliwością i nieprzewidywalnością martwej natury.
Obiecuję, że jutro posprzątam swój pokój.
W międzyczasie dom spłonął i .... matematycznie jesteśmy kłamcami wbrew własnej woli, bo pokój który obiecaliśmy posprzątać ulotnił się z dymem.
Najważniejsze twierdzenie w logice człowieka:Jeśli wykonanie przyrzeczenia jest
fizycznie niemożliwe to następuje automatyczne zwolnienie z takiego przyrzeczenia czyli nie zostaję kłamcą np. śmierć, pożar, powódź, w banku zawiesił się system i nie mogę odblokować konta itp.
W pozostałych przypadkach obowiązują operatory czysto matematyczne:
Implikacja odwrotna (= groźba)
p<=q = p + ~q = ~(~p*q - prawo de'Morgana
Implikacja prosta (= obietnica)
p=>q = ~p +q = ~(p*~q) - prawo de'Morgana
Powyższe twierdzenie gwarantuje człowiekowi matematyczną wolną wolę tzn. nie istnieje ani jedna groźba i ani jedna obietnica w której muszę zostać kłamcą wbrew własnej woli. Oczywiście kłamstwo to też element wolnej woli. Mogę kłamać kiedy zechcę, ale nic nie może mnie zmusić do kłamstwa wbrew mojej woli, przede wszystkim matematyka.
Zauważmy, że jeśli przyjmiemy iż groźba to równoważność to mamy tylko i wyłącznie takie wybory:
1.
Jestem zgodnie z definicją równoważności bezwzględnym sadystą wykonującym absolutnie każdą groźbę przy spełnionym warunku kary.
2.
Jestem normalnym człowiekiem ale wtedy kłamię na potęgę - matematyka do kosza.
Przykład obsługi groźby przez równoważność.
1 1 1
Jeśli ubrudzisz spodnie dostaniesz lanie
1 0 0
Gwarancja lania w przypadku brudnych spodni (równoważność)
Załóżmy, że syn wraca w brudnych spodniach bo pobili go bandyci ... a my biedni mamy tylko wybór 1 albo 2 jak wyżej. Oczywiście wybieramy kłamstwo - precz z matematyką.
6.2 Obsługa obietnicyDefinicja obietnicy:
Jeśli dowolny warunek to nagroda
Obietnica obsługiwana jest przez implikację prostą.
Obietnica = implikacja prosta
W obietnicy mam możliwość wręczenia nagrody mimo nie spełnienia warunku nagrody (0 1 1 = akt miłości). Jeśli obiecałem nagrodę to musze ją dać w przypadku spełnienia warunku nagrody - inaczej jestem kłamcą. Nie ma tu mowy o ograniczeniu wolnej woli bowiem nic i nikt nie zmusza mnie do obiecania czegokolwiek - robię to z własnej woli. Jeśli odbiorca nie spełni warunku nagrody to mogę zrobić co mi się podoba, dać nagrodę (0 1 1) albo nie dać (0 0 1) - to tylko i wyłącznie moja wolna wola. Większość nadawców tak czy siak da nagrodę bowiem szczęście człowieka polega na dzieleniu się szczęściem z bliźnim. Nadawca jest szczęśliwy, że odbiorca jest szczęśliwy i odwrotnie. Zauważmy, że nagrody dajemy przyjaciołom a nie wrogom.
Zwolnienia z obietnicy:
Do zwolnienia z wypowiedzianej obietnicy uprawniony jest odbiorca co oznacza, że w przypadkach nadzwyczajnych odbiorca może zwolnić nadawcę z obietnicy.
Przykład:
1 1 1
Jeśli przyjdziesz w czystych spodniach to odblokuję ci konto.
0 0 1
Przyszedłeś w brudnych spodniach nie odblokuję ci konta
0 1 1
Przyszedłeś w brudnych spodniach, odblokuje ci konto .. bo cię kocham (akt miłości)
1 0 0
Przyszedłeś w czystych spodniach, nie odblokuję ci konta = Kłamstwo.
Aby nie zostać kłamcą muszę odblokować konto zgodnie z obietnicą w 1 1 1.
Oczywiście kłamcą możemy zostać zawsze bo mamy wolna wolę, tylko co na to przyjaciel któremu obiecaliśmy nagrodę ?
Zauważmy, że w tym przypadku możemy zostać kłamcą wbrew własnej woli np. zawiesił się system bankowy, bank zbankrutował, odbiorca umarł itp. Jest to oczywiście złośliwość rzeczy martwych. W tym przypadku na mocy najważniejszego twierdzenia jesteśmy automatycznie zwolnieni z obietnicy co nie przeszkadza w dogadaniu się z odbiorcą i np. otworzenia mu konta w innym banku. Prawdziwym problemem jest tylko śmierć odbiorcy bo gdzie dostarczyć nagrodę, do nieba czy do piekła ?
6.3 Obsługa groźbyDefinicja groźby:
Jeśli dowolny warunek to kara
Groźba obsługiwana jest przez implikację odwrotną.
Groźba = implikacja odwrotna
W groźbie mam możliwość odstąpienia od wykonania dowolnej kary (1 0 1 = akt łaski) np. przez „zapomnienie” i nie zostaje kłamcą., co jest częstym przypadkiem w życiu. W groźbie mam też prawo nigdy i nikomu nie darować żadnej kary jeśli warunek kary zostanie spełniony (równoważność) i nie zostaję kłamcą (1 1 1) czyli mam matematyczną
wolną wolę.
W groźbie jeśli warunek kary nie zostanie spełniony to nie mam prawa karać (0 1 0) - to jedyny przypadek gdzie mogę zostać kłamcą … z własnej woli oczywiście.
Zwolnienia w groźbie:
W groźbie sam siebie mogę zwolnić z wykonania dowolnej groźby i nie jestem kłamcą - zapewnia mi to definicja groźby.
Mogę nie oznacza muszę.Przykład:
1 1 1
Jeśli ubrudzisz spodnie dostaniesz lanie
0 0 1
Czyste spodnie, nie dostajesz lania
0 1 0
Czyste spodnie, to zakaz lania - inaczej nadawca jest kłamcą.
1 0 1
Brudne spodnie, nie dostajesz lania … bo cię kocham (akt łaski)
Zauważmy, że w przypadku 1 0 1 nic nie zależy od złośliwości rzeczy martwych. W całej analizie wypowiedzianego zdania nie mam szans zostać kłamcą wbrew mojej woli. Mogę zostać kłamcą wyłącznie z własnej woli w przypadku 0 1 0. Nawet śmierć odbiorcy nie jest tu problemem bo:
1 0 1
Masz brudne spodnie, nie dostajesz lania … bo zabił cię samochód.
Jest jednak klasa gróźb w których złośliwość rzeczy martwych może wystąpić.
1 1 1
Jeśli ubrudzisz spodnie pozostawię twoje konto zablokowane
0 0 1
Jeśli przyjdziesz w czystych spodniach to odblokuję ci konto.
0 1 0
Czyste spodnie to gwarancja odblokowania konta.
W tej linii możemy zostać kłamcą wbrew własnej woli bo system mógł się zaciąć, bank zbankrutować itp. Dlatego na mocy najważniejszego twierdzenia wykluczamy takie przypadki, inaczej matematyka do kosza.
1 0 1
Ubrudziłeś spodnie, odblokuje ci konto bo cię kocham (akt łaski)
Zauważmy, że w przypadku brudnych spodni możemy odblokować konto (1 0 1) albo pozostawić zablokowane (1 1 1), to tylko i wyłącznie nasza wolna wola.
6.4 Pozorne sprzeczności z algebrą Boole’aSprzeczności języka mówionego z algebrą Boole’a są pozorne bowiem nasz mózg często operuje algebrą Boole’a na poziomie procedur, nie zaś na poziomie podstawowym.
Człowiek nie widzi bezpośrednio algebry Boole’a w grach komputerowych, jednak logika komputera to 100% algebra Boole’a.
Przedstawię tylko trzy przykładowe pozorne sprzeczności z algebrą Boole’a.
1.
Jutro o dziewiątej będę w kinie lub w teatrze
Jutro o dziewiątej będę w kinie albo w teatrze
Matematycznie poprawne jest drugie zdanie bowiem nie możemy być jednocześnie w dwóch miejscach. Zauważmy, że pierwsze zdanie zawiera w sobie drugie plus nie wyklucza jednoczesnego bycia w dwóch miejscach. Z tego powodu zdecydowana większość ludzi rzadko używa spójnika „albo” w języku mówionym.
2.
Jutro pójdę do kina i teatru
Jutro pójdę do kina lub teatru
Pierwsze zdanie powiemy gdy zależy nam na podkreśleniu że pójdziemy do kina i do teatru. Spójnik „lub” zawiera w sobie spójnik „i”, jest zatem bezpieczniejszy bo nawet gdy pójdę w jedno miejsce to matematycznym kłamcą nie zostanę ... a przyszłości nikt nie zna.
3.
Jan wszedł i padł martwy
Jan padł martwy i wszedł
Spójnik „i” teoretycznie umożliwia zamianę argumentów jak wyżej. Drugie zdanie to idiotyzm jeśli zastosujemy tu żywcem algebrę Boole’a. Jeśli jednak trochę pomyślimy to sprzeczność zniknie. W powyższym przypadku mamy do czynienia z następstwem czasowym i poprawnie matematycznie zdanie powinno brzmieć tak.
Jan wszedł po czym padł martwy
Nasz mózg doskonale o tym wie i używa prostszej formy korzystając ze spójnika „i” bo po pierwsze tak jest krócej a po drugie spójnik „i” jest używany bardzo często w przeciwieństwie do „po czym”.
6.5 DialogiW języku mówionym człowiek używa wyłącznie operatorów w logice dodatniej (wyjątek to XOR=albo).
Każde pierwsze zdanie rozpoczynające dialog wypowiadamy w logice dodatniej. Odbiorca kontynuuje tą logikę gdy się z nami zgadza lub przechodzi do logiki przeciwnej gdy ma odmienne zdanie. Mamy tu pełną analogię do implikacji gdzie zdaniu wypowiedzianemu zawsze przypisuje się 1 1 1 bez względu na przeczenia użyte w p i q.
Oznaczmy:
Y – logika dodatnia
~Y – logika ujemna
A – dowolne wyrażenie (zdanie)
~A – przeczenie dowolnego wyrażenia (zdania)
Y = A – wyrażenie w logice dodatniej
~Y = ~A – to samo wyrażenie w logice ujemnej
~(~Y) = ~(~A) czyli:
Y = A – powrót do logiki dodatniej itd.
W poniższej tabeli Y oznacza wyrażenie (zdanie wypowiedziane) jako pierwsze w dialogu.
Kod:
Logika dodatnia Y Logika ujemna ~Y
Y=2 ~Y=-2
Y = A*B ~Y=~A+~B
Y=~A+~B ~Y=A*B
Y=TAK ~Y=NIE
Y=Byłem w kinie ~Y=Nie byłem w kinie
Y=Zawsze chodzę do kina ~Y=Nigdy nie chodzę do kina
Przykłady dialogów:
1.
A: Zawsze całuję kobiety w rączkę
B: Ja też zawsze je całuję - ta sama logika, zgodność
2.
A: Zawsze całuję kobiety w rączkę
B: A ja nigdy tego nie robię – logika przeciwna, niezgodność
3.
A: Nigdy nie całuję kobiet w rączkę
B: Ja też nigdy nie całuję – ta sama logika, zgodność
4.
A: Nigdy nie całuję kobiet w rączkę
B: Ja zawsze całuję kobiety w rączkę – przejście do logiki przeciwnej, niezgodność
6.6 Pytania i odpowiedzi
Jeśli o coś pytamy to nie znamy odpowiedzi na zadawane pytanie albo udajemy że nie znamy – na jedno wychodzi. Pytać możemy zatem zarówno w logice dodatniej jak i ujemnej. Oczywiście odpowiadający odpowiada w tej samej logice co zadane pytanie jeśli potwierdza i w przeciwnej jeśli zaprzecza.
1.
A: Byłeś dzisiaj w szkole ?
B: Byłem w szkole – potwierdzenie w tej samej logice
B: Nie byłem w szkole – zaprzeczenie w logice przeciwnej
2.
A: Dlaczego nie byłeś dzisiaj w szkole ?
B: Nie byłem w szkole bo ... – potwierdzenie w tej samej logice
B: Nieprawda, byłem dzisiaj w szkole – zaprzeczenie w logice przeciwnej
Zauważmy, że w odpowiedzi B2 gdzieś musi być kłamstwo - albo syn kłamie, albo ktoś przekazał fałszywą informację matce. Możliwy jest też blef matki która nie wie czy syn był w szkole.
7.0 Dodatek matematyczno-filozoficzny
Aksjomat:
Żadne pojęcie nie może być równe zaprzeczeniu tego pojęcia
Dobro # NIE dobro (=zło)
Ciepło # NIE ciepło (=zimno)
Punktem odniesienia dla dobra jest zło, punktem odniesienia dla ciepła jest zimno itd. Jeśli usuniemy jedno z tych pojęć to drugie zniknie automatycznie, bo zniknie punkt odniesienia.
A = ~A - oznacza pojęcie niedostępne w naszym punkcie odniesienia (w naszym Wszechświecie).
Najlepiej zrozumieć to na przykładzie ciepła i zimna.
A#~A
Ciepło # NIE ciepło (=zimno)
czyli:
Ciepło # zimno
Wyobraźmy sobie, że żyjemy we Wszechświecie o stałej, idealnej temperaturze T=const. Dla nas takie pojęcia jak ciepło-zimno nie istnieją, to pojęcia nie z naszego świata.
Wyobraźmy sobie teraz, iż żyjemy w kolejnych Wszechświatach w których dostępne różnice temperatur są coraz mniejsze. W n-tym Wszechświecie różnica temperatur jest dowolnie mała, ale skończona. W takim Wszechświecie istnieją jeszcze pojęcia zimno-ciepło.
Pojęcia te znikną dopiero wtedy gdy T=const, czyli w nieskończenie małej różnicy temperatur.
Ciepło # Zimno
Pomiędzy ciepłem a zimnem
NIE MA NIC, te pojęcia będą sobie równe (styczne) w nieskończoności tzn. przy nieskończenie małej różnicy temperatur. Znikną wtedy z tego punktu odniesienia, w którym występują.
Gdyby możliwe było:
A = ~A
to algebra Boole'a leży w gruzach.
Dla A i ~A wyłącznie jedno z tych pojęć może być prawdą, drugie musi być fałszem.
A * ~A = 0
Z drugiej strony mamy twierdzenie mówiące o tym, iż A i ~A wzajemnie się uzupełniają.
A + ~A = 1 - suma logiczna A i ~A musi być prawdą.
Powyższe rozważania mają znaczenie dla teorii groźby i obietnicy.
Definicja implikacji:
p=>q - jeśli zajdzie p to zajdzie q (z p wynika q).
Nigdy nie może być:
p=~p, q=~q .. itp.
1 1 1
Jeśli zdasz egzamin dostaniesz komputer (obietnica)
p=>q
Rozważmy tylko przypadek nie zdania egzaminu.
0 0 1
Nie zdałeś egzaminu (~p), nie dostajesz komputera - ojciec nie skłamał.
0 1 1
Nie zdałeś egzaminu (~p), dostajesz komputer ... bo cię kocham (dowolne uzasadnienie niezależne, czyli różne od ~p)
0 1 1
Nie zdałeś egzaminu (~p), dostajesz komputer bo nie zdałeś egzaminu (uzasadnienie zależne, czyli równe ~p)
W dzisiejszym rozumieniu implikacji ojciec może wręczyć komputer z powodu nie zdanego egzaminu (uzasadnienie zależne)
i nie jest kłamcą !
Uzasadnienie wręczenia komputera może być wyłącznie niezależne albo zależne.
Oznaczmy:
~Z - uzasadnienie niezależne od zdania egzaminu (różne od ~p)
Z - uzasadnienie zależne (identyczne z ~p)
K=~Z - mam komputer dzięki uzasadnieniu niezależnemu
K = Z - mam komputer dzięki uzasadnieniu zależnemu
czyli:
Z=~Z
Zależne = NIEzależne
Zauważmy, iż uzasadnienia zależne (Z) i niezależne (~Z) wzajemnie się uzupełniają tzn. nie ma innych możliwości wręczenia komputera w przypadku nie zdania egzaminu.
Wracamy tu do fundamentalnych twierdzeń algebry Boole'a:
Z + ~Z = 1 - mam komputer, bo jeden z tych powodów jest prawdą (=1).
Z * ~Z = 0 - wyłącznie jedno z uzasadnień może być prawdą (=1), drugie musi być fałszem (=0).
Jedno z tych uzasadnień jest ewidentnym kłamstwem, oczywiście zależne czyli:
Z=0
~Z=1
W dzisiejszym rozumieniu implikacji ojciec może wręczyć komputer z dowolnego powodu, zależnego (Z) albo niezależnego (~Z) i nie jest kłamcą.
To jest bezpośrednie uderzenie w fundament logiki człowieka, algebrę Boole'a.
2007-12-24 KONIEC Podobno w Wigilię marzenia się spełniają .....