Quantcast
Wątki bez odpowiedzi | Aktywne wątki Teraz jest N sie 17, 2025 22:41



Ten wątek jest zablokowany. Nie możesz w nim pisać ani edytować postów.  [ Posty: 540 ]  Przejdź na stronę Poprzednia strona  1 ... 17, 18, 19, 20, 21, 22, 23 ... 36  Następna strona
 Nowa teoria implikacji 
Autor Wiadomość
Post Re: Nowa teoria implikacji
@rafal3006, zdajesz sobie sprawę, że to forum nie jest linkownią do dyskusji na innych forach?
Może zamiast polecanek spróbuj się zmierzyć z pytaniami naszych forumowiczów.


Pn cze 02, 2014 9:16
Avatar użytkownika

Dołączył(a): So lut 18, 2006 20:30
Posty: 1589
Post Re: Nowa teoria implikacji
Sensacyjna odpowiedź na pytania Zefcia, które zadał na wiara.pl
http://www.sfinia.fora.pl/forum-kubusia ... tml#212869

Armagedon logiki matematycznej Ziemian

http://www.sfinia.fora.pl/forum-kubusia ... tml#208945
zefciu napisał(a):
Ponieważ Kubuś ucieka z forów, na których zadaje mu się niewygodne pytania, przybyłem tutaj, aby przypomnieć mu o tych, na które jeszcze nie odpowiedział:

  1. Jaka jest różnica między p => q a q ~>p? (podobno jakaś jest, ale z "definicji" żadna nie wynika)
  2. Mając dane dowolne zdanie w jaki sposób przekształcamy je na zbiory? (chodzi o uniwersalną metodę, a nie o przykład na wygodnym zdaniu)
  3. Jakie 16 funkcji logicznych występuje w NTI?
  4. Jakie rozumowanie w KRZ wykazuje jego wewnętrzną sprzeczność? (Kubuś próbował dać przykład, ale rąbnął się trzy razy; tym niemniej nie odwołał tezy, że takie rozumowanie istnieje)

To tak na początek.

Ad.2
Odpowiedź tu:
http://www.sfinia.fora.pl/forum-kubusia ... tml#212740

Ad.3
Zero-jedynkowo operatory w AK i KRZ są identyczne, jest ich 16.
Fundamentalnie różna jest interpretacja zer i jedynek wewnątrz każdego operatora, o czym bez przerwy piszę.

Ad.4
Dowód formalny wewnętrznej sprzeczności logiki matematycznej Ziemian jest w poście, który pozwolę sobie zacytować w całości:
http://www.sfinia.fora.pl/forum-kubusia ... tml#211836
rafal3006 napisał(a):
idiota napisał(a):
"Idioto z twojej definicji implikacji wynika że równoważność jest podzbiorem implikacji."

Po pierwsze nie wiadomo co to znaczy.
Równoważność i implikacja to funktory a nie zbiory, więc nie mogą pomiędzy nimi zachodzić relacje jakie zachodzą między zbiorami.
Tak jak śpiew skowronka nie może być bardziej kwaśny niż śpiew słowika (o ile nie mówimy przenośnie, a w logice przenośni nie wolno stosować).

.Po drugie, kiedy już by się ustaliło co w zasadzie chcesz powiedzieć to potem warto to w JAKIKOLWIEK POPRAWNY sposób WYKAZAĆ.

Wiec pamiętaj na zawsze:
Pisząc "zdanie jest implikacją" nie piszesz w pełni poprawnie - stosujesz skrót.
Pisząc ""równoważność jest podzbiorem" piszesz od rzeczy - to zdanie nic nie znaczy, jak np. "dwa jest pomarańczowe".


Chyba nie rozumiesz tego co sam napisałeś:
idiota napisał(a):
"… a może sam Idiota to wyjaśni?"

A wyjaśni.
Mamy sobie predykaty P i Q.
One wyznaczają (jak to predykaty) zbiory Zp do którego należą obiekty spełniające predykat p i Zq do którego itd...
i teraz:
- jeżeli prawdziwe jest zdanie P(x)->Q(x) to zachodzi inkluzja Zq w zbiorze Zp (Zq jest podzbiorem Zp)
- a jeżeli prawdziwe jest zdanie P(x)<=>Q(x) to zachodzi równość Zp i Zq.

idiota napisał(a):
A teraz jeszcze addendum:

"Moje rozumienie:"

A jak to rozumieją zwykli matematycy?
Tak:
Implikacja:
p=>q
Zbiór p zawiera się w zbiorze q
Równoważność:
p<=>q
Zbiór p zawiera się w zbiorze q i zbiór q zawiera się w zbiorze p.


I nic ni mniej ni więcej.
TYLKO TYLE.

W ostatnim zdaniu masz:
Dla zbiorów tożsamych p=q zachodzi równoważność, czyli wynikanie => w dwie strony:
p<=>q = (p=>q)*(q=>p)

Natomiast jeśli p zawiera zawiera się w zbiorze q ale zbiory p i q nie są tożsame to zachodzi twoja implikacja:
p=>q
Zbiór p zawiera się w zbiorze q

Załóżmy że mamy do czynienia z taką implikacją czyli:
I1.
(p=>q)*~[p=q]
Zbiór p zawiera się w zbiorze q i nie jest tożsamy ze zbiorem q

Co się dzieje u Ciebie jeśli zbiory p i q są tożsame?
Wedle Ciebie nadal to jest implikacja tylko tym razem opisana równaniem logicznym:
I2.
(p=>q)*[p=q]
Zbiór p zawiera się w zbiorze q i jest tożsamy ze zbiorem q

Ja nie wiem, jak można nie widzieć czysto matematycznej sprzeczności w twoich definicjach I1 i I2!
W matematyce masz tak:
Jeśli I1 jest implikacją:
I1 = (p=>q)*~[p=q]
oraz
I2 jest implikacją
I2=(p=>q)*[p=q]

To z tego wynika że:
I1=I2
czyli mamy sprzeczność czysto matematyczną bo:
(p=>q)*~[p=q] ## (p=>q)*[p=q]
gdzie:
## - różne na moc definicji
cnd

Oczywistym jest że twoja równoważność opisana jest dokładnie takim samym równaniem jak twoja implikacja I2!
R1.
(p=>q)*[p=q]
Zbiór p zawiera się w zbiorze q i jest tożsamy ze zbiorem q

To jest oczywiście poprawna definicja równoważności - identyczna jest w algebrze Kubusia.

Zauważ że jeśli wywalisz to I2 ze swojej logiki matematycznej przyjmując identyczną definicję implikacji jak w algebrze Kubusia, czyli definicje I1, to automatycznie znajdziesz się w matematycznym Raju, zamiast w obecnym matematycznym piekle!

Definicje to definicje można je zmieniać jak rękawiczki.
Czy widzisz jakieś przeszkody do przyjęcia definicji implikacji rodem z algebry Kubusia?
Dlaczego nie widzisz potrzeby wywalenia w kosmos definicji ewidentnie sprzecznej matematycznie - twojej definicji implikacji!

Zauważ, że u Kubusia jest wszystko w porządku:
To jest definicja implikacji prostej, wynikanie w jedną stronę:
p|=>q = (p=>q)*~[p=q]

To jest definicja równoważności, wynikanie w dwie strony:
p<=>q = (p=>q)*[p=q]

Na mocy definicji zachodzi:
Kod:
Implikacja          ##  Równoważność
p|=>q=(p=>q)*~[p=q] ##  p<=>q=(p=>q)*[p=q]

gdzie:
## - różne na mocy definicji

U Kubusia nigdy nie ma możliwości, aby równoważność prawdziwa była równocześnie implikacją prawdziwą!
… i tak musi być w poprawnej matematyce!

… a to co pisze Wikipedia to najzwyklejsze, matematyczne brednie:
http://pl.wikipedia.org/wiki/Klasyczny_ ... _zda%C5%84

Prawo opuszczania równoważności:
p<=>q => p=>q
Równoważność prawdziwa:
p<=>q
wymusza implikację prawdziwą:
p=>q
Nie ma takiej możliwości aby kiedykolwiek z równoważności prawdziwej:
p<=>q =1
zrobić implikację prawdziwą:
p=>q=1
Każdy kto twierdzi że można delikatnie mówiąc, bredzi.

Czy zgadzasz się z moim komentarzem do twojego postu?

Kubuś

P.S.
Tylko mi nie chrzan znowu o jakichś farmazonach, odnieś się ściśle matematycznie do tego co SAM napisałeś!

Dodatkowy dowód na przykładzie jest tu:
http://www.sfinia.fora.pl/forum-kubusia ... tml#212752
http://www.sfinia.fora.pl/forum-kubusia ... tml#212779
z finałem będącym ośmieszeniem logiki ziemian:
Dowód debilizmu logiki „matematycznej” Ziemian:
http://www.sfinia.fora.pl/forum-kubusia ... tml#212790

Ad. 1
Teoria niezbędna do obalenia prawa kontrapozycji w implikacji wyłożona jest w poście wyżej:
http://www.sfinia.fora.pl/forum-kubusia ... tml#212795

Diagram implikacji prostej i odwrotnej dla sztywnego punktu odniesienia ustawionego na zdaniu p=>q.
Obrazek

Definicja operatora logicznego w zbiorach:
Z operatorem logicznym mamy do czynienia wtedy i tylko wtedy gdy seria czterech zdań opisujących ten operator pokrywa wszystkie obszary rozłączne widoczne w diagramie dowolnego operatora.

Definicja implikacji prostej p|=>q bez sztywnego punktu odniesienia:
Kod:
p=>q=~p~>~q
A: p=>q  =[p*q=p]    =1 - pokrywa obszar brązowy
B: p~~>~q=[p*~q]     =0 - pokrywa obszar pusty
C:~p~>~q =[~p*~q=~q] =1 - pokrywa obszar żółty
D:~p~~>q =[~p*q]     =1 - pokrywa obszar niebieski

Z diagramu w zbiorach widzimy, że zbiory rozłączne względem p, przylegające do siebie to:
A+B <=> C+D
Zbiór B jest zbiorem pustym, stąd mamy równoważność wiedzy:
A: p=>q <=> C: ~p~>~q + D: ~p~~>q
Jeśli wiemy że zbiór p zawiera się => w zbiorze q i nie jest tożsamy ze zbiorem q:
p|=>q = (p=>q)*~(p=q)
To na pewno => wiemy że:
Zbiór ~p zawiera w sobie ~> zbiór ~q i nie jest tożsamy ze zbiorem ~q:
~p|~>~q = (~p~>~q)*~(~p=~q)
Zachodzi też odwrotnie, stąd mamy:
Implikacja prosta w logice dodatniej (bo q) jest tożsama z implikacją odwrotną w logice ujemnej (bo ~q):
p|=>q = ~p|~>~q

Uwaga 1
W implikacji wiedza kiedy zdanie p=>q będzie w przyszłości prawdziwe/fałszywe jest wiedzą drugorzędną.
Z tabeli implikacji prostej bez trudu odczytujemy kiedy zdanie p=>q będzie w przyszłości prawdziwe/fałszywe:
p=>q = p*q + ~p*~q + ~p*q
co matematycznie oznacza:
(p=>q)=1 <=> (p*q)=1 lub (~p*~q)=1 lub (~p*q)=1
Wystarczy, że którykolwiek człon po prawej stronie zostanie ustawiony na 1 i już zdanie p=>q jest prawdziwe. Wszystkie trzy jedynki z prawej strony są równorzędne, nie odróżnimy tu twardej jedynki A (gwarancji matematycznej) od dwóch jedynek miękkich C i D (najzwyklejszego „rzucania monetą”).
W tym momencie możemy się pożegnać z istotą implikacji, gwarancją matematyczną, zawartą wyłącznie w zdaniu A. Dokładnie taka jest idiotyczna logika matematyczna Ziemian w której nieznane jest pojęcie gwarancji matematycznej w implikacji!

Prawidłowe rozumienie implikacji to odpowiedź na dwa pytania:
1. Co się stanie jeśli zajdzie p?
2. Co się stanie jeśli zajdzie ~p?

Definicja implikacji odwrotnej q|=>p dla sztywnego punktu odniesienia p=>q:
Kod:
q~>p=~q=>~p
E: q~>p  =[q*p=q]    =1 - pokrywa obszar brązowy
F: q~~>~p=[q*~p]     =1 - pokrywa obszar niebieski
G:~q=>~p =[~q*~p=~p] =1 - pokrywa obszar żółty
H:~q~~>p =[~q*p]     =0 - pokrywa obszar pusty

Zbiory rozłączne względem q to:
E+F <=> G+H
Zbiór H jest zbiorem pustym, stąd mamy równoważność wiedzy:
E: q~>p + F: q~~>~p <=> ~q=>~q

Jeśli wiemy, że zbiór q zawiera w sobie ~> zbiór p i nie jest tożsamy ze zbiorem p:
q|~>p = (q~>p)*~(q=p)
to na pewno => wiemy że:
zbiór ~q zwiera się => w zbiorze ~p i nie jest tożsamy ze zbiorem ~p
~p|=>~q = (~p=>~q)*~(~p=~q)
Zachodzi też odwrotnie, stąd mamy:
Implikacja odwrotna w logice dodatniej (bo q) jest tożsama z implikacją prostą w logice ujemnej (bo ~q):
p|~>q = ~p|=>~q

Uwaga 2
W implikacji wiedza kiedy zdanie q~>p będzie w przyszłości prawdziwe/fałszywe jest wiedzą drugorzędną.
Z tabeli implikacji odwrotnej bez trudu odczytujemy kiedy zdanie q~>p będzie w przyszłości prawdziwe/fałszywe:
q~>p = q*p + q*~p + ~q*~p
co matematycznie oznacza:
q~>p <=> (q*p)=1 lub (q*~p)=1 lub (~p*~q) =1
Wystarczy, że którykolwiek człon po prawej stronie zostanie ustawiony na 1 i już zdanie q~>p jest prawdziwe. Wszystkie trzy jedynki z prawej strony są równorzędne, nie odróżnimy tu twardej jedynki C (gwarancji matematycznej) od dwóch jedynek miękkich A i B (najzwyklejszego „rzucania monetą”).
W tym momencie możemy się pożegnać z istotą implikacji, gwarancją matematyczną, zawartą wyłącznie w zdaniu C. Dokładnie taka jest idiotyczna logika matematyczna Ziemian w której nieznane jest pojęcie gwarancji matematycznej w implikacji!

Prawidłowe rozumienie implikacji to odpowiedź na dwa pytania:
1. Co się stanie jeśli zajdzie q?
2. Co się stanie jeśli zajdzie ~q?

Porównajmy uwagi 1 i 2 czyli odpowiedź na pytania kiedy zdania p=>q i q~>p będą w przyszłości prawdziwe/fałszywe:
Uwaga 1
1. p=>q = p*q + ~p*~q + ~p*q
Uwaga 2:
q~>p = q*p + q*~p + ~q*~p
Koniunkcja i alternatywa zbiorów są przemienne stąd:
q~>p = p*q + ~p*q + ~p*~q
2. q~>p = p*q + ~p*~q + ~p*q
Prawe strony 1 i 2 są identyczne, stąd zachodzi matematyczna tożsamość:
p=>q = q~>p
Ta tożsamość jest poprawna (także w algebrze Kubusia!) wtedy i tylko wtedy interesuje nas wyłącznie wiedza kiedy w przyszłości zdania p=>q i q~>p będą prawdziwe/fałszywe.
Tylko i wyłącznie w tym przypadku, dowolna z definicji implikacji jest zbędna.
Dlaczego Ziemianie wzięli sobie akurat definicję implikacji prostej p=>q zamiatając pod dywan definicję implikacji odwrotnej q~>p?
Odpowiedź:
… bo definicja implikacji odwrotnej jest taka.
Kod:
   q p q~>p
A: 1 1  =1
B: 1 0  =1
C: 0 0  =1
D: 0 1  =0

Ślepi Ziemianie, widzący w operatorach logicznych wyłącznie idiotyczne zera i jedynki musieli by tu odczytać:
Z prawdy może powstać cokolwiek
Z fałszu może powstać wyłącznie fałsz

W tym momencie cała „misternie” utkana logika Ziemian leży w gruzach.
Czy już widzicie swoją głupotę Ziemianie?

Oczywiście oba zdania wyżej to matematyczna głupota, bo w implikacji zupełnie nie o to chodzi.
Jaka jest rzeczywistość?
Dowolna definicja implikacji (prosta lub odwrotna) to zawsze w jednej połówce warunek wystarczający => (100% pewność = gwarancja matematyczna), natomiast w drugiej połówce to warunek konieczny ~> (najzwyklejsze „rzucanie monetą”).

Podsumowując:
Nie ma „rzucania monetą” nie ma mowy o jakiejkolwiek implikacji, ani prostej, ani odwrotnej.

Dlaczego nie da się wyrugować z logiki ani operatora implikacji prostej, ani też operatora implikacji odwrotnej?

Definicja operatora logicznego w zbiorach:
Z operatorem logicznym mamy do czynienia wtedy i tylko wtedy gdy seria czterech zdań opisujących ten operator pokrywa wszystkie obszary rozłączne widoczne w diagramie dowolnego operatora.

Zauważmy, że równanie:
p=>q = q~>p
Pokrywa wyłącznie obszary:
Lewa strona:
A: p=>q = [p*q=p] - obszar brązowy
Prawa strona:
E: q~>p = [q*p=p] - obszar brązowy
Czyli …
Kompletne równanie pokrywa zaledwie obszar brązowy.
Do definicji operatora w zbiorach duuużo mu brakuje.
Sam fakt, że powyższe równanie pokrywa ten sam obszar (brązowy), na mocy definicji operatora wyżej dyskwalifikuje powyższe równanie w spójnikach implikacyjnych: =>, ~>, ~~> (a nie w spójnikach "lub"(+) i "i"(*))!

Weźmy to nieszczęsne prawo kontrapozycji, co do którego Ziemianie są fałszywie przekonani że obowiązuje w implikacji.
p=>q = ~q=>~p
Lewa strona:
p=>q = [p*q=p] - obszar brązowy
~q=>~p = [~q*~p=~q] - obszar żółty
Doskonale widać, że brakuje tu pokrycia obszaru niebieskiego, stąd prawo kontrapozycji jest fałszywe w implikacji.

Prawo kontrapozycji jest poprawne w równoważności, bo tu obszar niebieski nie występuje.

Dlaczego prawo kontrapozycji Zemianom działa?
.. bo w poprawnej logice matematycznej możemy założyć cokolwiek.
Po udowodnieniu prawdziwości zdania p=>q mamy prawo założyć, że ten warunek wystarczający wchodzi w skład równoważności, mamy zatem prawo korzystać z prawa kontrapozycji:
p=>q = ~q=>~p

Oczywiście rzeczywistość musi zostać zweryfikowana, bo prawo kontrapozycji obowiązuje także w implikacji, ale w tej formie:
p=>q = ~p=>~q ## q~>p = ~q=>~p
gdzie:
## - rożne na mocy definicji
W implikacji zdanie:
p=>q = ~p~>~q
wymusza prawdziwość zdania:
q~>p = ~q=>~p

Podsumowując:
Co z tego ze biedny Ziemianin udowodni prawdziwość dwóch różnych na mocy definicji zdań:
p=>q i ~q=>~p
co mu to da?
Czy rozstrzygnie tymi dowodami, że zdanie p=>q jest częścią równoważności?

Odpowiedź:
Absolutnie NIE!

Podsumowując:
Prawo kontrapozycji to tylko sztuka dla sztuki, bo nie rozstrzyga o kluczowej dla istoty logiki sprawy. Nie rozstrzyga czy zdanie p=>q wchodzi w skład implikacji, czy też jest częścią czegoś fundamentalnie innego - równoważności.

Oczywiście można z niego korzystać, jeśli dowód prawdziwości zdania p=>q jest trudniejszy niż dowód prawdziwości zdania ~q=>~p.

_________________
Algebra Kubusia - nowa teoria zbiorów


Cz sie 07, 2014 14:53
Zobacz profil
Post Re: Nowa teoria implikacji
rafal3006 napisał(a):
Sensacyjna odpowiedź na pytania Zefcia, które zadał na wiara.pl
Oczywiście nie ma żadnej sensacji, ani żadnej odpowiedzi.
Cytuj:
Ad.2
A gdzie 1?
Tona bełkotu. Odpowiedzi na moje pytanie - brak.
Cytuj:
Ad.3
Zero-jedynkowo operatory w AK i KRZ są identyczne, jest ich 16.
Proszę je wymienić. Bo używasz takich, których w KRZ nie ma.
Fundamentalnie różna jest interpretacja zer i jedynek wewnątrz każdego operatora, o czym bez przerwy piszę.[/quote]KRZ nie "interpretuje" prawdy i fałszu, tylko określa reguły, jakie nimi rządzą. Pytanie "co to jest prawda" to już ontologia, a nie logika. Co to znaczy "wewnątrz operatora"?
Cytuj:
Dowód formalny wewnętrznej sprzeczności logiki matematycznej Ziemian jest w poście, który pozwolę sobie zacytować w całości
Proszę zacytować wyłącznie ten "dowód formalny". Nie mam ochoty przekopywać się przez tonę kubusiowego bełkotu, by znowu niczego nie znaleźć.


Pt sie 08, 2014 9:21
Avatar użytkownika

Dołączył(a): So lut 18, 2006 20:30
Posty: 1589
Post Re: Nowa teoria implikacji
zefciu napisał(a):
Cytuj:
Dowód formalny wewnętrznej sprzeczności logiki matematycznej Ziemian jest w poście, który pozwolę sobie zacytować w całości
Proszę zacytować wyłącznie ten "dowód formalny". Nie mam ochoty przekopywać się przez tonę kubusiowego bełkotu, by znowu niczego nie znaleźć.

Bardzo proszę ...

Ad.4
Dowód formalny wewnętrznej sprzeczności logiki matematycznej Ziemian jest w poście, który pozwolę sobie zacytować w całości:
http://www.sfinia.fora.pl/forum-kubusia ... tml#211836
rafal3006 napisał(a):
idiota napisał(a):
"Idioto z twojej definicji implikacji wynika że równoważność jest podzbiorem implikacji."

Po pierwsze nie wiadomo co to znaczy.
Równoważność i implikacja to funktory a nie zbiory, więc nie mogą pomiędzy nimi zachodzić relacje jakie zachodzą między zbiorami.
Tak jak śpiew skowronka nie może być bardziej kwaśny niż śpiew słowika (o ile nie mówimy przenośnie, a w logice przenośni nie wolno stosować).

.Po drugie, kiedy już by się ustaliło co w zasadzie chcesz powiedzieć to potem warto to w JAKIKOLWIEK POPRAWNY sposób WYKAZAĆ.

Wiec pamiętaj na zawsze:
Pisząc "zdanie jest implikacją" nie piszesz w pełni poprawnie - stosujesz skrót.
Pisząc ""równoważność jest podzbiorem" piszesz od rzeczy - to zdanie nic nie znaczy, jak np. "dwa jest pomarańczowe".


Chyba nie rozumiesz tego co sam napisałeś:
idiota napisał(a):
"… a może sam Idiota to wyjaśni?"

A wyjaśni.
Mamy sobie predykaty P i Q.
One wyznaczają (jak to predykaty) zbiory Zp do którego należą obiekty spełniające predykat p i Zq do którego itd...
i teraz:
- jeżeli prawdziwe jest zdanie P(x)->Q(x) to zachodzi inkluzja Zq w zbiorze Zp (Zq jest podzbiorem Zp)
- a jeżeli prawdziwe jest zdanie P(x)<=>Q(x) to zachodzi równość Zp i Zq.

idiota napisał(a):
A teraz jeszcze addendum:

"Moje rozumienie:"

A jak to rozumieją zwykli matematycy?
Tak:
Implikacja:
p=>q
Zbiór p zawiera się w zbiorze q
Równoważność:
p<=>q
Zbiór p zawiera się w zbiorze q i zbiór q zawiera się w zbiorze p.


I nic ni mniej ni więcej.
TYLKO TYLE.

W ostatnim zdaniu masz:
Dla zbiorów tożsamych p=q zachodzi równoważność, czyli wynikanie => w dwie strony:
p<=>q = (p=>q)*(q=>p)

Natomiast jeśli p zawiera zawiera się w zbiorze q ale zbiory p i q nie są tożsame to zachodzi twoja implikacja:
p=>q
Zbiór p zawiera się w zbiorze q

Załóżmy że mamy do czynienia z taką implikacją czyli:
I1.
(p=>q)*~[p=q]
Zbiór p zawiera się w zbiorze q i nie jest tożsamy ze zbiorem q

Co się dzieje u Ciebie jeśli zbiory p i q są tożsame?
Wedle Ciebie nadal to jest implikacja tylko tym razem opisana równaniem logicznym:
I2.
(p=>q)*[p=q]
Zbiór p zawiera się w zbiorze q i jest tożsamy ze zbiorem q

Ja nie wiem, jak można nie widzieć czysto matematycznej sprzeczności w twoich definicjach I1 i I2!
W matematyce masz tak:
Jeśli I1 jest implikacją:
I1 = (p=>q)*~[p=q]
oraz
I2 jest implikacją
I2=(p=>q)*[p=q]

To z tego wynika że:
I1=I2
czyli mamy sprzeczność czysto matematyczną bo:
(p=>q)*~[p=q] ## (p=>q)*[p=q]
gdzie:
## - różne na moc definicji
cnd

Oczywistym jest że twoja równoważność opisana jest dokładnie takim samym równaniem jak twoja implikacja I2!
R1.
(p=>q)*[p=q]
Zbiór p zawiera się w zbiorze q i jest tożsamy ze zbiorem q

To jest oczywiście poprawna definicja równoważności - identyczna jest w algebrze Kubusia.

Zauważ że jeśli wywalisz to I2 ze swojej logiki matematycznej przyjmując identyczną definicję implikacji jak w algebrze Kubusia, czyli definicje I1, to automatycznie znajdziesz się w matematycznym Raju, zamiast w obecnym matematycznym piekle!

Definicje to definicje można je zmieniać jak rękawiczki.
Czy widzisz jakieś przeszkody do przyjęcia definicji implikacji rodem z algebry Kubusia?
Dlaczego nie widzisz potrzeby wywalenia w kosmos definicji ewidentnie sprzecznej matematycznie - twojej definicji implikacji!

Zauważ, że u Kubusia jest wszystko w porządku:
To jest definicja implikacji prostej, wynikanie w jedną stronę:
p|=>q = (p=>q)*~[p=q]

To jest definicja równoważności, wynikanie w dwie strony:
p<=>q = (p=>q)*[p=q]

Na mocy definicji zachodzi:
Kod:
Implikacja          ##  Równoważność
p|=>q=(p=>q)*~[p=q] ##  p<=>q=(p=>q)*[p=q]

gdzie:
## - różne na mocy definicji

U Kubusia nigdy nie ma możliwości, aby równoważność prawdziwa była równocześnie implikacją prawdziwą!
… i tak musi być w poprawnej matematyce!

P.S.
Jak nie widzisz AD. 1 to idź na śfinię, tam masz wielkimi literami:
Ad. 1

_________________
Algebra Kubusia - nowa teoria zbiorów


So sie 09, 2014 6:31
Zobacz profil
Post Re: Nowa teoria implikacji
Powtarzam: proszę podać odpowiedzi na moje pytania. Nie wklejać posty, gdzie rzekomo te odpowiedzi można znaleźć. Nie wskazywać, gdzie rzekomo te odpowiedzi są. Po prostu podać odpowiedzi. Ja nie będę za Ciebie odwalał roboty i szukał.

Aha - przypominam też, że logika klasyczna posługuje się wyrobioną notacją. Więc "dowód formalny obalający logikę klasyczną" nie może się opierać na Twoich "znaczkach".

Aha nr 2 - Twój znaczek "##" odpowiada rzekomo jednemu z 16 funktorów logiki klasycznej. Któremu?


Pn sie 11, 2014 6:42
Avatar użytkownika

Dołączył(a): So lut 18, 2006 20:30
Posty: 1589
Post Re: Nowa teoria implikacji
Operatory dwuargumentowe

Maszynowa definicja operatora logicznego (hardware):
Operator logiczny to odpowiedź układu na wszystkie możliwe wymuszenia 0 i 1 na wejściu układu.

Operator logiczny to kompletna kolumna wynikowa Y będąca odpowiedzią na wszystkie możliwe wymuszenia 0 i 1 na wejściu układu. Pojedyńcze linie tabeli zero-jedynkowej nie są operatorami logicznymi.

Abstrakcyjna definicja operatora dwuargumentowego:
Operator dwuargumentowy to czarna skrzynka o dwóch wejściach p i q oraz tylko jednym wyjściu Y.

Na wejściach p i q wymuszamy wszystkie możliwe stany 0 i 1 zapisując odpowiedzi na wyjściu Y.

Ogólna definicja operatora dwuargumentowego:
Kod:
p q  Y=?
1 1  =x
1 0  =x
0 1  =x
0 0  =x


Jak widzimy przy dwóch wejściach p i q możemy zdefiniować 16 (2^4) różnych stanów na wyjściu Y, czyli 16 różnych na mocy definicji operatorów logicznych.

Aksjomat to założenie które przyjmuje się bez dowodu.

Aksjomatyka technicznej algebry Boole’a to po prostu wszystkie możliwe zero-jedynkowe definicje operatorów logicznych plus banalny rachunek zero-jedynkowy.
Kod:
p q  OR NOR  AND NAND  <=> XOR  => N(=>) ~> N(~>)  ~~>  N(~~>)  P NP  Q NQ
1 1  1   0    1   0     1   0   1    0   1    0     1    0      1 0   1 0
1 0  1   0    0   1     0   1   0    1   1    0     1    0      1 0   0 1
0 1  1   0    0   1     0   1   1    0   0    1     1    0      0 1   1 0
0 0  0   1    0   1     1   0   1    0   1    0     1    0      0 1   0 1


Operator logiczny to kompletna kolumna wynikowa będąca odpowiedzią na wszystkie możliwe wymuszenia na wejściach p i q.

Operatory logiczne możemy podzielić na operatory w logice dodatniej i operatory w logice ujemnej:
Kod:
Logika dodatnia    Logika ujemna
OR                 NOR
AND                NAND
<=>                XOR
=>                 N(=>)
~>                 N(~>)
~~>                N(~~>)
P                  NP
Q                  NQ


Wszystkich możliwych operatorów logicznych dwuargumentowych jest 16. Za operatory dodatnie przyjęto te, które człowiek używa w naturalnym języku mówionym, w swojej naturalnej logice.

Operator ujemny to zanegowany operator dodatni, co doskonale widać w powyższej tabeli.

Definicje operatorów ujemnych:
Kod:
pNORq       =     ~(p+q)
pNANDq      =     ~(p*q)
pXORq       =     ~(p<=>q)
pN(=>)q     =     ~(p=>q)
pN(~>)q     =     ~(p~>q)   
p~~>q       =     ~(p~~>q)
pNPq        =     ~(pPq)
pNQq        =     ~(pQq)


Komentarz:
Kolumna pNORq to zanegowana kolumna OR:
Y=p+q
Stąd:
~Y = ~(p+q)
pNORq = ~(p+q)
itd
W języku mówionym operatory ujemne nie są używane, ponieważ łatwo je zastąpić operatorami dodatnimi plus negacją co widać w powyższej tabeli.

zefciu napisał(a):
Powtarzam: proszę podać odpowiedzi na moje pytania. Nie wklejać posty, gdzie rzekomo te odpowiedzi można znaleźć. Nie wskazywać, gdzie rzekomo te odpowiedzi są. Po prostu podać odpowiedzi. Ja nie będę za Ciebie odwalał roboty i szukał.

Aha - przypominam też, że logika klasyczna posługuje się wyrobioną notacją. Więc "dowód formalny obalający logikę klasyczną" nie może się opierać na Twoich "znaczkach".

Aha nr 2 - Twój znaczek "##" odpowiada rzekomo jednemu z 16 funktorów logiki klasycznej. Któremu?

Żadnemu, trzeba być matematycznym błaznem, aby twierdzić że między wszystkimi szesnastoma operatorami wyżej nie zachodzi:
Operator X ## Operator Y
gdzie:
## - rożne na mocy definicji

Każdego jełopa który twierdzi że dowolne dwa z powyższych operatorów logicznych są tożsame zapraszam do laboratorium układów logicznych gdzie bardzo łatwo pokazać co się stanie jeśli zewrzemy wyjścia dwóch dowolnych operatorów wyżej - na 1000% każdy matematyczny jełop zobaczy kupę dymu i smrodu, wszystko mu wyleci w powietrze.
Skoro na 100% nie są tożsame to muszą być:
## - różne na mocy definicji
.. proste jak cep.
Absolutnie każdy z powyższych operatorów jest w logice niezbędny, żadnego nie da się wyrugować, wszystkimi 16 operatorami doskonale posługują się w praktyce eksperci jedynej poprawnej logiki matematycznej, algebry Kubusia - 5-cio latki i humaniści.

Pokaż mi zefciu którego z powyższych operatorów twoim zdaniem nie znają w praktyce języka mówionego 5-cio latki i humaniści - bez trudu ci udowodnię w jak wielkim jesteś błędzie.

Twój cierpliwy nauczyciel logiki,

Kubuś

_________________
Algebra Kubusia - nowa teoria zbiorów


Pn sie 11, 2014 16:36
Zobacz profil
Post Re: Nowa teoria implikacji
rafal3006 napisał(a):
Operatory dwuargumentowe
Sratory. Czym różni się wyrażenie:
p => q

od wyrażenia

q ~> p

Odpowiesz na to pytanie? Czy nie potrafisz?
Cytuj:
Maszynowa definicja operatora logicznego (hardware)
Mówimy o formalnej logice, a nie o implementacji. Więc termin hardware nie ma tutaj sensu.
Cytuj:
Operator logiczny to odpowiedź układu na wszystkie możliwe wymuszenia 0 i 1 na wejściu układu.
Operator logiczny to odpowiedź? Symbol "+" to suma? I co to są "wymuszenia"?
Cytuj:
Operator logiczny to kompletna kolumna wynikowa Y
Przed chwilą operator był odpowiedzią. A teraz jest kolumną. W następnym zdaniu będzie fruwającym różowym termosem.
Cytuj:
Abstrakcyjna definicja operatora dwuargumentowego:
Operator dwuargumentowy to czarna skrzynka o dwóch wejściach p i q oraz tylko jednym wyjściu Y.
A nie można napisać po ludzku "funkcja o dwóch argumentach"? Piszesz celowo tak, żeby zamotać.
Cytuj:
Jak widzimy przy dwóch wejściach p i q możemy zdefiniować 16 (2^4) różnych stanów na wyjściu Y, czyli 16 różnych na mocy definicji operatorów logicznych.
No i pięknie. Ale to już wiemy i to mamy w logice klasycznej.
Cytuj:
Aksjomat to założenie które przyjmuje się bez dowodu.
No co Ty nie powiesz?
Cytuj:
Aksjomatyka technicznej algebry Boole’a to po prostu wszystkie możliwe zero-jedynkowe definicje operatorów logicznych plus banalny rachunek zero-jedynkowy.
Kod:
p q  OR NOR  AND NAND  <=> XOR  => N(=>) ~> N(~>)  ~~>  N(~~>)  P NP  Q NQ
1 1  1   0    1   0     1   0   1    0   1    0     1    0      1 0   1 0
1 0  1   0    0   1     0   1   0    1   1    0     1    0      1 0   0 1
0 1  1   0    0   1     0   1   1    0   0    1     1    0      0 1   1 0
0 0  0   1    0   1     1   0   1    0   1    0     1    0      0 1   0 1
No i? Nadal mamy logikę klasyczną, tylko z kretyńskimi "znaczkami" zamiast normalnych symboli.
Cytuj:
Operator logiczny to kompletna kolumna wynikowa będąca odpowiedzią na wszystkie możliwe wymuszenia na wejściach p i q.
Już to pisałeś.
Cytuj:
Operatory logiczne możemy podzielić na operatory w logice dodatniej i operatory w logice ujemnej:
A jakie jest kryterium tego podziału?
Cytuj:
Wszystkich możliwych operatorów logicznych dwuargumentowych jest 16. Za operatory dodatnie przyjęto te, które człowiek używa w naturalnym języku mówionym, w swojej naturalnej logice.
Człowiek w naturalnym języku mówionym używa operatora przypisującego każdym dwóm argumentom prawdę. A takiego, który przypisuje im fałsz nie używa. Dodatkowo nie używa spójnika "albo" (XOR). Tako obwieścił nam Kubuś.
Cytuj:
W języku mówionym operatory ujemne nie są używane, ponieważ łatwo je zastąpić operatorami dodatnimi plus negacją co widać w powyższej tabeli.
"Możesz do tego zestawu w zamówić nie (frytki wtedy i tylko wtedy gdy sałatkę)". Tako wyrażają się sprzedawcy w fast-foodach zdaniem Kubusia.
Cytuj:
Operator X ## Operator Y
gdzie:
## - rożne na mocy definicji
No to oczywiste, że funkcje są różne. Ale to że funkcje są różne nie znaczy, że ich wartość dla takiego samego argumentu będzie różna.

Przykład:
funkcja sin jest różna od funkcji tan. Jednak dla każdej wielokrotności π wartość tych dwóch funkcji jest taka sama.
Cytuj:
Każdego jełopa który twierdzi że dowolne dwa z powyższych operatorów logicznych są tożsame zapraszam do laboratorium układów logicznych gdzie bardzo łatwo pokazać co się stanie jeśli zewrzemy wyjścia dwóch dowolnych operatorów wyżej - na 1000% każdy matematyczny jełop zobaczy kupę dymu i smrodu, wszystko mu wyleci w powietrze.
Po co takie rzeczy piszesz? Przecież dobrze wiemy, że nigdy w życiu nie miałeś w ręku lutownicy, ani nie programowałeś komputera. Nie musisz dowodzić swojej ignorancji przez takie bajki.
Cytuj:
Absolutnie każdy z powyższych operatorów jest w logice niezbędny, żadnego nie da się wyrugować, wszystkimi 16 operatorami doskonale posługują się w praktyce eksperci jedynej poprawnej logiki matematycznej, algebry Kubusia - 5-cio latki i humaniści.
Przypomnijmy, że nadal mamy do czynienia z normalnymi funktorami KRZ.

No a odpowiedzi na moje pytania nadal nie ma. I nie będzie.


Wt sie 12, 2014 7:48
Avatar użytkownika

Dołączył(a): So lut 18, 2006 20:30
Posty: 1589
Post Re: Nowa teoria implikacji
zefciu napisał(a):
rafal3006 napisał(a):
Operatory dwuargumentowe
Sratory. Czym różni się wyrażenie:
p => q
od wyrażenia
q ~> p


http://www.sfinia.fora.pl/forum-kubusia ... tml#208945
zefciu napisał(a):
Ponieważ Kubuś ucieka z forów, na których zadaje mu się niewygodne pytania, przybyłem tutaj, aby przypomnieć mu o tych, na które jeszcze nie odpowiedział:

  1. Jaka jest różnica między p => q a q ~>p? (podobno jakaś jest, ale z "definicji" żadna nie wynika)
  2. Mając dane dowolne zdanie w jaki sposób przekształcamy je na zbiory? (chodzi o uniwersalną metodę, a nie o przykład na wygodnym zdaniu)
  3. Jakie 16 funkcji logicznych występuje w NTI?
  4. Jakie rozumowanie w KRZ wykazuje jego wewnętrzną sprzeczność? (Kubuś próbował dać przykład, ale rąbnął się trzy razy; tym niemniej nie odwołał tezy, że takie rozumowanie istnieje)

To tak na początek.

Niżej masz odpowiedź na twój problem Ad.1 , napisz waść co z tego nie rozumiesz?

Ad. 1
Teoria niezbędna do obalenia prawa kontrapozycji w implikacji wyłożona jest w poście wyżej:
http://www.sfinia.fora.pl/forum-kubusia ... tml#212795

Diagram implikacji prostej i odwrotnej dla sztywnego punktu odniesienia ustawionego na zdaniu p=>q.
Obrazek

Definicja operatora logicznego w zbiorach:
Z operatorem logicznym mamy do czynienia wtedy i tylko wtedy gdy seria czterech zdań opisujących ten operator pokrywa wszystkie obszary rozłączne widoczne w diagramie dowolnego operatora. Opisywane równaniami logicznymi obszary nie mogą na siebie zachodzić.

Definicja implikacji prostej p|=>q bez sztywnego punktu odniesienia:
Kod:
p=>q=~p~>~q
A: p=>q  =[p*q=p]    =1 - pokrywa obszar brązowy
B: p~~>~q=[p*~q]     =0 - pokrywa obszar pusty
C:~p~>~q =[~p*~q=~q] =1 - pokrywa obszar żółty
D:~p~~>q =[~p*q]     =1 - pokrywa obszar niebieski

Z diagramu w zbiorach widzimy, że zbiory rozłączne względem p, przylegające do siebie to:
A+B <=> C+D
Zbiór B jest zbiorem pustym, stąd mamy równoważność wiedzy:
A: p=>q <=> C: ~p~>~q + D: ~p~~>q
Jeśli wiemy że zbiór p zawiera się => w zbiorze q i nie jest tożsamy ze zbiorem q:
p|=>q = (p=>q)*~(p=q)
To na pewno => wiemy że:
Zbiór ~p zawiera w sobie ~> zbiór ~q i nie jest tożsamy ze zbiorem ~q:
~p|~>~q = (~p~>~q)*~(~p=~q)
Zachodzi też odwrotnie, stąd mamy:
Implikacja prosta w logice dodatniej (bo q) jest tożsama z implikacją odwrotną w logice ujemnej (bo ~q):
p|=>q = ~p|~>~q

Uwaga 1
W implikacji wiedza kiedy zdanie p=>q będzie w przyszłości prawdziwe/fałszywe jest wiedzą drugorzędną.
Z tabeli implikacji prostej bez trudu odczytujemy kiedy zdanie p=>q będzie w przyszłości prawdziwe/fałszywe:
p=>q = p*q + ~p*~q + ~p*q
co matematycznie oznacza:
(p=>q)=1 <=> (p*q)=1 lub (~p*~q)=1 lub (~p*q)=1
Wystarczy, że którykolwiek człon po prawej stronie zostanie ustawiony na 1 i już zdanie p=>q jest prawdziwe. Wszystkie trzy jedynki z prawej strony są równorzędne, nie odróżnimy tu twardej jedynki A (gwarancji matematycznej) od dwóch jedynek miękkich C i D (najzwyklejszego „rzucania monetą”).
W tym momencie możemy się pożegnać z istotą implikacji, gwarancją matematyczną, zawartą wyłącznie w zdaniu A. Dokładnie taka jest idiotyczna logika matematyczna Ziemian w której nieznane jest pojęcie gwarancji matematycznej w implikacji!

Prawidłowe rozumienie implikacji to odpowiedź na dwa pytania:
1. Co się stanie jeśli zajdzie p?
2. Co się stanie jeśli zajdzie ~p?

Definicja implikacji odwrotnej q|=>p dla sztywnego punktu odniesienia p=>q:

Definicja operatora logicznego w zbiorach:
Z operatorem logicznym mamy do czynienia wtedy i tylko wtedy gdy seria czterech zdań opisujących ten operator pokrywa wszystkie obszary rozłączne widoczne w diagramie dowolnego operatora. Opisywane równaniami logicznymi obszary nie mogą na siebie zachodzić.
Kod:
q~>p=~q=>~p
E: q~>p  =[q*p=q]    =1 - pokrywa obszar brązowy
F: q~~>~p=[q*~p]     =1 - pokrywa obszar niebieski
G:~q=>~p =[~q*~p=~p] =1 - pokrywa obszar żółty
H:~q~~>p =[~q*p]     =0 - pokrywa obszar pusty

Zbiory rozłączne względem q to:
E+F <=> G+H
Zbiór H jest zbiorem pustym, stąd mamy równoważność wiedzy:
E: q~>p + F: q~~>~p <=> G: ~q=>~p

Jeśli wiemy, że zbiór q zawiera w sobie ~> zbiór p i nie jest tożsamy ze zbiorem p:
q|~>p = (q~>p)*~(q=p)
to na pewno => wiemy że:
zbiór ~q zwiera się => w zbiorze ~p i nie jest tożsamy ze zbiorem ~p
~p|=>~q = (~p=>~q)*~(~p=~q)
Zachodzi też odwrotnie, stąd mamy:
Implikacja odwrotna w logice dodatniej (bo q) jest tożsama z implikacją prostą w logice ujemnej (bo ~q):
p|~>q = ~p|=>~q

Uwaga 2
W implikacji wiedza kiedy zdanie q~>p będzie w przyszłości prawdziwe/fałszywe jest wiedzą drugorzędną.
Z tabeli implikacji odwrotnej bez trudu odczytujemy kiedy zdanie q~>p będzie w przyszłości prawdziwe/fałszywe:
q~>p = q*p + q*~p + ~q*~p
co matematycznie oznacza:
q~>p <=> (q*p)=1 lub (q*~p)=1 lub (~p*~q) =1
Wystarczy, że którykolwiek człon po prawej stronie zostanie ustawiony na 1 i już zdanie q~>p jest prawdziwe. Wszystkie trzy jedynki z prawej strony są równorzędne, nie odróżnimy tu twardej jedynki C (gwarancji matematycznej) od dwóch jedynek miękkich A i B (najzwyklejszego „rzucania monetą”).
W tym momencie możemy się pożegnać z istotą implikacji, gwarancją matematyczną, zawartą wyłącznie w zdaniu C. Dokładnie taka jest idiotyczna logika matematyczna Ziemian w której nieznane jest pojęcie gwarancji matematycznej w implikacji!

Prawidłowe rozumienie implikacji to odpowiedź na dwa pytania:
1. Co się stanie jeśli zajdzie q?
2. Co się stanie jeśli zajdzie ~q?

Porównajmy uwagi 1 i 2 czyli odpowiedź na pytania kiedy zdania p=>q i q~>p będą w przyszłości prawdziwe/fałszywe:
Uwaga 1
1. p=>q = p*q + ~p*~q + ~p*q
Uwaga 2:
q~>p = q*p + q*~p + ~q*~p
Koniunkcja i alternatywa zbiorów są przemienne stąd:
q~>p = p*q + ~p*q + ~p*~q
2. q~>p = p*q + ~p*~q + ~p*q
Prawe strony 1 i 2 są identyczne, stąd zachodzi matematyczna tożsamość:
p=>q = q~>p

Fundamentalne prawo logiki:
W dowolnym równaniu algebry Boole'a mamy do czynienia ze zmiennymi sprowadzonymi do jedynek

Ziemanie doskonale wiedzą, choć nie są tego świadomi, że w dowolnym równaniu logicznym wszystkie zmienne sprowadzone są do jedynek.

Dowód:
Uwaga 2.7 z "Wstępu do matematyki" prof. Newelskiego z UWr
http://www.math.uni.wroc.pl/~newelski/d ... node3.html

Prof. Newelski napisał:
A.
Y=1 <=> (p=0 i q=0 i r=1) lub (p=0 i q=1 i r=0) lub (p=1 i q=0 i r=1)

Po czym od razu zapisał końcowe równanie algebry Boole’a opisujące analizowaną przez niego tabelę zero-jedynkową:
B.
Y = ~p*~q*r + ~p*q*~r + p*~q*r
co matematycznie oznacza:
C.
Y=1 <=> (~p=1 i ~q=1 i r=1) lub (~p=1 i q=1 i ~r=1) lub (p=1 i ~q=1 i r=1)

Żaden Ziemski matematyk nie może mieć wątpliwości, że w równaniu B mamy po prawej stronie do czynienia ze zmiennymi binarnymi.
Straszna prawda dla Ziemskich matematyków to prawa Prosiaczka, których nie znają.
Doskonale widać, że w równaniu B wszystkie zmienne sprowadzone są do jedynek na mocy praw Prosiaczka, w zerach i jedynkach nie ma tu żadnej logiki.
Prawa Prosiaczka:
(p=0) = (~p=1)
(p=1) = (~p=0)
cnd
Prawa Prosiaczka możemy stosować wybiórczo do dowolnych zmiennych.
Przykładowo, tożsamy do C będzie zapis:
D.
~Y=0 <=> (p=0 i ~q=1 i r=1) lub (~p=1 i q=1 i ~r=1) lub (p=1 i ~q=1 i ~r=0)
Matematycznie zachodzi tożsamość:
A=C=D
Prawda jest w logice domyślna, to jest wspólny punkt odniesienia dla równań algebry Boole’a. Po sprowadzeniu dowolnej zmiennej do jedynki na mocy praw Prosiaczka, możemy tą jedynkę pominąć nic nie tracąc na jednoznaczności.

Implikacja prosta p=>q i odwrotna q~>p w równaniach prof. Newelskiego:
Kod:
Kod            |Równania          |Kod            |Równania
zero-jedynkowy |prof. Newelskiego |zero-jedynkowy |prof. Newelskiego
dla p=>q       |dla p=>q          |dla q~>p       |dla q~>p
   p q p=>q    |                  | q p q~>p      |
A: 1 1  =1     | (p=>q)= p* q     | 1 1  =1       | (q~>p)= q* p
B: 1 0  =0     |~(p=>q)= p*~q     | 0 1  =0       |~(q~>p)=~q* p
C: 0 0  =1     | (p=>q)=~p*~q     | 0 0  =1       | (q~>p)=~q*~p
D: 0 1  =1     | (p=>q)=~p* q     | 1 0  =1       | (q~>p)= q*~p
   1 2   3         a     b  c       4 5   6           d     e  f

Tożsamość kolumn wynikowych 3 i 6 jest dowodem formalnym w rachunku zero-jedynkowym prawa algebry Boole’a:
p=>q = q~>p
Dokładnie to samo widać z równań prof. Newelskiego opisujących poszczególne linie:
1. p=>q = p*q + ~p*~q + ~p*q
q~>p = q*p + ~q*~p + q*~p
Koniunkcja i alternatywa zbiorów są przemienne, stąd:
2. q~>p = p*q +~p*~q + ~p*q
Prawe strony równań 1 i 2 są tożsame, stąd:
p=>q = q~>p

Ta tożsamość jest poprawna (także w algebrze Kubusia!) wtedy i tylko wtedy gdy interesuje nas wyłącznie wiedza kiedy w przyszłości zdania p=>q i q~>p będą prawdziwe/fałszywe.
Tylko i wyłącznie w tym przypadku, dowolna z definicji implikacji jest zbędna.
Dlaczego Ziemianie wzięli sobie akurat definicję implikacji prostej p=>q zamiatając pod dywan definicję implikacji odwrotnej q~>p?
Odpowiedź:
… bo definicja implikacji odwrotnej jest taka.
Kod:
   q p q~>p
A: 1 1  =1
B: 1 0  =1
C: 0 0  =1
D: 0 1  =0

Ślepi Ziemianie, widzący w operatorach logicznych wyłącznie idiotyczne zera i jedynki musieli by tu odczytać:
Z prawdy może powstać cokolwiek
Z fałszu może powstać wyłącznie fałsz

W tym momencie cała „misternie” utkana logika Ziemian leży w gruzach.
Czy już widzicie swoją głupotę Ziemianie?

Oczywiście oba zdania wyżej to matematyczna głupota, bo w implikacji zupełnie nie o to chodzi.
Jaka jest rzeczywistość?
Dowolna definicja implikacji (prosta lub odwrotna) to zawsze w jednej połówce warunek wystarczający => (100% pewność = gwarancja matematyczna), natomiast w drugiej połówce to warunek konieczny ~> (najzwyklejsze „rzucanie monetą”).

Podsumowując:
Nie ma „rzucania monetą” nie ma mowy o jakiejkolwiek implikacji, ani prostej, ani odwrotnej.

Dlaczego nie da się wyrugować z logiki ani operatora implikacji prostej, ani też operatora implikacji odwrotnej?

Definicja operatora logicznego w zbiorach:
Z operatorem logicznym mamy do czynienia wtedy i tylko wtedy gdy seria czterech zdań opisujących ten operator pokrywa wszystkie obszary rozłączne widoczne w diagramie dowolnego operatora. Opisywane równaniami logicznymi obszary nie mogą na siebie zachodzić.

Zauważmy, że równanie:
p=>q = q~>p
Pokrywa wyłącznie obszary:
Lewa strona:
A: p=>q = [p*q=p] - obszar brązowy
Prawa strona:
E: q~>p = [q*p=p] - obszar brązowy
Czyli …
Kompletne równanie pokrywa zaledwie obszar brązowy.
Do definicji operatora w zbiorach dużo mu brakuje.
Sam fakt, że powyższe równanie pokrywa ten sam obszar (brązowy), na mocy definicji operatora wyżej dyskwalifikuje powyższe równanie w spójnikach implikacyjnych: =>, ~>, ~~>!
Równanie to jest poprawne wyłącznie w spójnikach "lub"(+) i "i"(*) gdzie zachodzi przemienność argumentów, problem w tym, że w implikacji nie zachodzi przemienność argumentów.

Weźmy to nieszczęsne prawo kontrapozycji, co do którego Ziemianie są fałszywie przekonani że obowiązuje w implikacji.
p=>q = ~q=>~p
Lewa strona:
p=>q = [p*q=p] - obszar brązowy
~q=>~p = [~q*~p=~q] - obszar żółty
Doskonale widać, że brakuje tu pokrycia obszaru niebieskiego, stąd prawo kontrapozycji jest fałszywe w implikacji.

Prawo kontrapozycji jest poprawne w równoważności, bo tu obszar niebieski nie występuje.

Dlaczego prawo kontrapozycji Zemianom działa?
... bo w poprawnej logice matematycznej możemy założyć cokolwiek.
Mamy prawo założyć, że twarunek wystarczający p=>q wchodzi w skład równoważności i korzystać z prawa kontrapozycji:
p=>q = ~q=>~p

Oczywiście rzeczywistość musi zostać zweryfikowana, bo prawo kontrapozycji obowiązuje także w implikacji, ale w tej formie:
p=>q = ~p=>~q ## q~>p = ~q=>~p
gdzie:
## - rożne na mocy definicji
W implikacji równanie prawdziwe:
p=>q = ~p~>~q
wymusza prawdziwość równania:
q~>p = ~q=>~p

Podsumowując:
Co z tego ze biedny Ziemianin udowodni prawdziwość dwóch różnych na mocy definicji zdań:
p=>q i ~q=>~p
co mu to da?
Czy rozstrzygnie tymi dowodami, że zdanie p=>q jest częścią równoważności?

Odpowiedź:
Absolutnie NIE!

Podsumowując:
Prawo kontrapozycji to tylko sztuka dla sztuki, bo nie rozstrzyga o kluczowej dla istoty logiki sprawy. Nie rozstrzyga czy zdanie p=>q wchodzi w skład implikacji, czy też jest częścią czegoś fundamentalnie innego - równoważności.

Oczywiście można z niego korzystać, jeśli dowód prawdziwości zdania p=>q jest trudniejszy niż dowód prawdziwości zdania ~q=>~p.

_________________
Algebra Kubusia - nowa teoria zbiorów


Wt sie 12, 2014 11:08
Zobacz profil
Post Re: Nowa teoria implikacji
Podsumowując:

odpowiedzi na moje pytania nie ma i nie będzie. Będą tylko "znaczki", diagramy, które nie wiadomo jak czytać, wzajemnie sprzeczne "definicje" i ogólny słowotok.


Wt sie 12, 2014 12:43
Avatar użytkownika

Dołączył(a): So lut 18, 2006 20:30
Posty: 1589
Post Re: Nowa teoria implikacji
Odpowiedź na twoje najważniejsze pytanie:
p=>q = q~>p
masz wyżej w 100%.
Dopóki matołki (czytaj Ziemscy matematycy) będą ograniczać algebrę Boole'a do trzech znaczków (dokładnie to robią na mocy definicji algebry Boole'a!):
NOT(~), "lub"(+) i "i"(*)
z naturalnej logiki człowieka, to ja się z matołkami zgadzam, ta tożsamość zachodzi co dowiedziono w poście wyżej.

Problem w tym że ekspertów jedynej poprawnej logiki matematycznej, 5-cio latków i humanistów KOMPLETNIE nie interesuje to, co interesuje matołków.
Co więcej, matołki sami nie widzą o czym gadają.
Pokaż mi podręcznik matematyki w którym jest ten wzorek:
p=>q =p*q + ~p*~q + ~p*q
Wyjaśnienie:
Patrz post wyżej i równania prof. Newelskiego
Jak pokażesz powyższe równanie implikacji w spójnikach "lub"(+) i "i"(*) w jakimkolwiek podręczniku matematyki to kasuję AK.
Jak udowodnisz fałszywość powyższego równania MATEMATYCZNEGO (sic!) skasuję AK tym bardziej.

Do dzieła Zefciu, pokaż co potrafisz,

Twój cierpliwy wykładowca logiki,

Kubuś

_________________
Algebra Kubusia - nowa teoria zbiorów


Wt sie 12, 2014 16:25
Zobacz profil
Post Re: Nowa teoria implikacji
rafal3006 napisał(a):
Odpowiedź na twoje najważniejsze pytanie:
p=>q = q~>p
masz wyżej w 100%.
Proszę przedstawić tę odpowiedź i tylko ją. Nie wrzucać tonę bełkotu, w której rzekomo gdzieś jest ta odpowiedź. Nie wskazywać post, gdzie rzekomo jest odpowiedź, tylko przedstawić odpowiedź. Ja się nie lubię w gównie grzebać.
Cytuj:
Dopóki matołki (czytaj Ziemscy matematycy) będą ograniczać algebrę Boole'a do trzech znaczków (dokładnie to robią na mocy definicji algebry Boole'a!):
NOT(~), "lub"(+) i "i"(*)
Oczywiście algebra Boole'a nie ogranicza się do "trzech znaczków". W ogóle pojęcie "znaczka" w niej nie występuje i nie używa ona operatorów "+" i "*".

Więc czemu nt. algebry Boole'a kłamiesz?
Cytuj:
Pokaż mi podręcznik matematyki w którym jest ten wzorek:
p=>q =p*q + ~p*~q + ~p*q
No przecież sam wskazałeś - podręcznik Newelskiego.
Cytuj:
Jak pokażesz powyższe równanie implikacji w spójnikach "lub"(+) i "i"(*) w jakimkolwiek podręczniku matematyki to kasuję AK.
Łżesz! Nie skasujesz. Wielokrotnie stawiałeś już takie warunki, ja je spełniałem, a Ty nie "skasowałeś". Więc nie łżyj.
Cytuj:
Jak udowodnisz fałszywość powyższego równania MATEMATYCZNEGO (sic!) skasuję AK tym bardziej.
Dlaczego mam dowodzić jego fałszywości, skoro jest prawdziwe. I to prawdziwe w KRZ.


Śr sie 13, 2014 7:10
Avatar użytkownika

Dołączył(a): So lut 18, 2006 20:30
Posty: 1589
Post Re: Nowa teoria implikacji
zefciu napisał(a):
rafal3006 napisał(a):
Odpowiedź na twoje najważniejsze pytanie:
p=>q = q~>p
masz wyżej w 100%.
Proszę przedstawić tę odpowiedź i tylko ją. Nie wrzucać tonę bełkotu, w której rzekomo gdzieś jest ta odpowiedź. Nie wskazywać post, gdzie rzekomo jest odpowiedź, tylko przedstawić odpowiedź. Ja się nie lubię w gównie grzebać.

Powtarzam, masz ją w tym poście w 100%:
viewtopic.php?p=823974#p823974
Powtarzam, napisz czego nie rozumiesz w tym króciuteńkim poście, co konkretnie kwestionujesz?
zefciu napisał(a):
Cytuj:
Dopóki matołki (czytaj Ziemscy matematycy) będą ograniczać algebrę Boole'a do trzech znaczków (dokładnie to robią na mocy definicji algebry Boole'a!):
NOT(~), "lub"(+) i "i"(*)
Oczywiście algebra Boole'a nie ogranicza się do "trzech znaczków". W ogóle pojęcie "znaczka" w niej nie występuje i nie używa ona operatorów "+" i "*".
Więc czemu nt. algebry Boole'a kłamiesz?

Idź najpierw do szkółki i się doszkól:
http://pl.wikipedia.org/wiki/Algebra_Boole%E2%80%99a
Algebra Boole'a – algebra ogólna stosowana w matematyce, informatyce teoretycznej oraz elektronice cyfrowej. Jej nazwa pochodzi od nazwiska matematyka, filozofa i logika George'a Boole'a. Teoria algebr Boole'a jest działem matematyki na pograniczu teorii częściowego porządku, algebry, logiki matematycznej i topologii.
Typowymi przykładami algebr Boole'a są: rodzina wszystkich podzbiorów ustalonego zbioru wraz działaniami na zbiorach jako operacjami algebry oraz dwuelementowa algebra wartości logicznych {0, 1} z działaniami koniunkcji, alternatywy i negacji.

… i poczytaj sobie co tam dalej pisze, nigdzie w definicji algebry Boole’a nie znajdziesz niczego poza trzema znaczkami:
NIE(~), „lub”(+) i „i”(*)
Jeśli twierdzisz że spójniki logiczne wyżej z naturalnej logiki człowieka (sic!) to nie jest algebra Boole’a to jesteś matematycznym osiołkiem.
zefciu napisał(a):
Cytuj:
Pokaż mi podręcznik matematyki w którym jest ten wzorek:
p=>q =p*q + ~p*~q + ~p*q
No przecież sam wskazałeś - podręcznik Newelskiego.
Cytuj:
Jak pokażesz powyższe równanie implikacji w spójnikach "lub"(+) i "i"(*) w jakimkolwiek podręczniku matematyki to kasuję AK.
Łżesz! Nie skasujesz. Wielokrotnie stawiałeś już takie warunki, ja je spełniałem, a Ty nie "skasowałeś". Więc nie łżyj.

… no to sprawdźmy czy choć trochę rozumiesz z tego co napisał prof. Newelski
viewtopic.php?p=823974#p823974

rafal3006 napisał(a):
Fundamentalne prawo logiki:
W dowolnym równaniu algebry Boole'a mamy do czynienia ze zmiennymi sprowadzonymi do jedynek

Ziemanie doskonale wiedzą, choć nie są tego świadomi, że w dowolnym równaniu logicznym wszystkie zmienne sprowadzone są do jedynek.

Dowód:
Uwaga 2.7 z "Wstępu do matematyki" prof. Newelskiego z UWr
http://www.math.uni.wroc.pl/~newelski/d ... node3.html

Prof. Newelski napisał:
A.
Y=1 <=> (p=0 i q=0 i r=1) lub (p=0 i q=1 i r=0) lub (p=1 i q=0 i r=1)

Po czym od razu zapisał końcowe równanie algebry Boole’a opisujące analizowaną przez niego tabelę zero-jedynkową:
B.
Y = ~p*~q*r + ~p*q*~r + p*~q*r
co matematycznie oznacza:
C.
Y=1 <=> (~p=1 i ~q=1 i r=1) lub (~p=1 i q=1 i ~r=1) lub (p=1 i ~q=1 i r=1)

Żaden Ziemski matematyk nie może mieć wątpliwości, że w równaniu B mamy po prawej stronie do czynienia ze zmiennymi binarnymi.
Straszna prawda dla Ziemskich matematyków to prawa Prosiaczka, których nie znają.
Doskonale widać, że w równaniu B wszystkie zmienne sprowadzone są do jedynek na mocy praw Prosiaczka, w zerach i jedynkach nie ma tu żadnej logiki.
Prawa Prosiaczka:
(p=0) = (~p=1)
(p=1) = (~p=0)
cnd
Prawa Prosiaczka możemy stosować wybiórczo do dowolnych zmiennych.
Przykładowo, tożsamy do C będzie zapis:
D.
~Y=0 <=> (p=0 i ~q=1 i r=1) lub (~p=1 i q=1 i ~r=1) lub (p=1 i ~q=1 i ~r=0)
Matematycznie zachodzi tożsamość:
A=C=D
Prawda jest w logice domyślna, to jest wspólny punkt odniesienia dla równań algebry Boole’a. Po sprowadzeniu dowolnej zmiennej do jedynki na mocy praw Prosiaczka, możemy tą jedynkę pominąć nic nie tracąc na jednoznaczności.

Czy rozumiesz iż prof. Newelski w swoim równaniu sprowadził wszystkie zmienne do jedynek na mocy praw Prosiaczka (oczywiście nieznanych matematykom):
TAK/NIE

_________________
Algebra Kubusia - nowa teoria zbiorów


Śr sie 13, 2014 18:51
Zobacz profil
Post Re: Nowa teoria implikacji
rafal3006 napisał(a):
Powtarzam, napisz czego nie rozumiesz w tym króciuteńkim poście

  • Jak się czyta te diagramy?
  • Co to jest punkt odniesienia implikacji?
  • Co to jest sztywny punkt odniesienia implikacji?
  • Jak przekształcamy zdania na zbiory?
To tak na początek.
Cytuj:
Typowymi przykładami algebr Boole'a są
No właśnie - przykładami. Algebra boole'a może też się składać z jednej wartości (prawda/fałsz) i jednego operatora (NAND/NOR). A może mieć więcej.
Cytuj:
W dowolnym równaniu algebry Boole'a mamy do czynienia ze zmiennymi sprowadzonymi do jedynek
Powtarzasz w kółko to zdanie, ale nie wyjaśniasz, co to znaczy.


Cz sie 14, 2014 6:11
Avatar użytkownika

Dołączył(a): So lut 18, 2006 20:30
Posty: 1589
Post Re: Nowa teoria implikacji
zefciu napisał(a):
Cytuj:
W dowolnym równaniu algebry Boole'a mamy do czynienia ze zmiennymi sprowadzonymi do jedynek
Powtarzasz w kółko to zdanie, ale nie wyjaśniasz, co to znaczy.

Nie ja ci mam wyjaśniać, lecz prof. Newelski ci to wyjaśnia.
Nie moje to zdanie lecz prof. Newelskiego.
Czego nie rozumiesz z przekształceń prof. Newelskiego w moim poście wyżej?
Oczywiście że technika tworzenia równań logicznych z dowolnej tabeli zero-jedynkowej to nie wymysł prof. Newelskiego, w technice ten algorytm znany jest co najmniej od 1980 (studiowałem wtedy), Kiedy prawdopodobnie prof. Newelski bawił się w piaskownicy.

Powtarzam:
Co jest dla Ciebie niejasne w przekształceniach prof. Newelskiego?

Musimy zacząć od jakiegoś wspólnego punktu odniesienia - bełkotanie w kółko o zerach i jedynkach (a taka jest twoja "logika") to poroniony pomysł ... porozmawiajmy o równaniach algebry Boole'a - chyba nie powiesz że równania algebry Boole'a to nie jest algebra Boole'a :)

_________________
Algebra Kubusia - nowa teoria zbiorów


Cz sie 14, 2014 7:12
Zobacz profil
Avatar użytkownika

Dołączył(a): So lut 18, 2006 20:30
Posty: 1589
Post Re: Nowa teoria implikacji
Z dedykacją dla Zefcia:
http://www.sfinia.fora.pl/forum-kubusia ... tml#213648

Kompuś - pierwszy w historii ludzkości program komputerowy który myśli jak człowiek - potrafi rozmawiać z człowiekiem w jego naturalnym języku

_________________
Algebra Kubusia - nowa teoria zbiorów


Pt sie 15, 2014 11:38
Zobacz profil
Wyświetl posty nie starsze niż:  Sortuj wg  
Ten wątek jest zablokowany. Nie możesz w nim pisać ani edytować postów.   [ Posty: 540 ]  Przejdź na stronę Poprzednia strona  1 ... 17, 18, 19, 20, 21, 22, 23 ... 36  Następna strona

Nie możesz rozpoczynać nowych wątków
Nie możesz odpowiadać w wątkach
Nie możesz edytować swoich postów
Nie możesz usuwać swoich postów
Nie możesz dodawać załączników

Szukaj:
Skocz do:  
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group.
Designed by Vjacheslav Trushkin for Free Forums/DivisionCore.
Przyjazne użytkownikom polskie wsparcie phpBB3 - phpBB3.PL